ECE 345: Linear Systems and Signals

Homework 7

Problem 1 (Computing CTFTs from the definition, SSTA 5.39). Find the CTFT of the following signal with $A=5.0$ and $T=3.0$:

Problem 2 (Using CTFT properties, OW 4.6). Suppose that $x(t) \stackrel{\text { CTFT }}{\longleftrightarrow} X(j \omega)$. Then find the CTFT of the following signals using CTFT properties.
(a) $x_{1}(t)=x(1-t)+x(-1-t)$
(b) $x_{2}(t)=x(3 t-6)$
(c) $x_{3}(t)=\frac{d^{2}}{d t^{2}} x(t-1)$

Problem 3 (Using CTFT properties II). Suppose that $x(t) \stackrel{\text { CTFT }}{\longleftrightarrow} X(j \omega)$. Then find the time domain signals corresponding to the following CTFTs.
(a) $X_{1}(j \omega)=\frac{4}{3} e^{-j 2 \omega / 3} X(-j \omega / 3)$
(b) $X_{2}(j \omega)=\frac{1}{3} e^{j 2(\omega-2)} X^{*}\left(j \frac{\omega-2}{3}\right)$

Problem 4 (Computing CTFTs, OW 4.21). Compute the CTFT for the following signals.
(a) $e^{-3|t|} \sin (2 t)$
(b) $\frac{\sin (\pi t)}{(\pi t)} \cdot \frac{\sin (2 \pi(t-1))}{\pi(t-1)}$
(c) $t e^{-2 t} \sin (4 t) u(t)$

Problem 5 (Even and odd parts, OW 4.9). Suppose

$$
x(t)= \begin{cases}0 & |t|>1 \tag{1}\\ \frac{t+1}{2} & -1 \leq t \leq 1\end{cases}
$$

First, sketch the function so that you know what you are looking at.
(a) Find the CTFT $X(j \omega)$
(b) Find $x_{\text {even }}(t)=\frac{x(t)+x(-t)}{2}$ and $x_{\text {odd }}(t)=\frac{x(t)-x(-t)}{2}$.
(c) Find the CTFT of the even and odd parts of $x(t)$ and check that they correspond to the real and imaginary parts of $X(j \omega)$

Problem 6 (System identification is not so easy). Consider the following three impulse responses:

$$
\begin{align*}
& h_{1}(t)=u(t) \tag{2}\\
& h_{2}(t)=-2 \delta(t)+5 e^{-2 t} u(t) \tag{3}\\
& h_{3}(t)=2 e^{-t} u(t) \tag{4}
\end{align*}
$$

Using the CTFT, do the following.

1. Find the output of these systems to the input $\cos (t)$.
2. Find the output of these systems to the input $\cos (2 t)$.
3. Find another system whose output with input $\cos (t)$ is the same as $h_{1}(t)$.
4. Find another system whose output with input $\cos (2 t)$ is the same as $h_{2}(t)$.

What this means is that if you have an LTI system with a wire going in and a wire going out, just looking at the output to a single cosine input will not let you figure out ("identify") the system impulse response.

Problem 7 (Filtering). One thing that differs between textbooks is how they define the sinc function. For example, in the textbook (SSTA p.219), they define

$$
\operatorname{rect}(t)=\left\{\begin{array}{ll}
1 & \frac{-1}{2} \leq t \leq \frac{1}{2} \tag{5}\\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \operatorname{sinc}(t)=\frac{\sin (t)}{t}\right.
$$

and the CTFT pairs

$$
\begin{array}{r}
\operatorname{rect}\left(\frac{t}{\tau}\right) \stackrel{\mathrm{CTFT}}{\longleftrightarrow} \tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right) \\
\frac{W}{\pi} \operatorname{sinc}(W t) \stackrel{\mathrm{CTFT}}{\longleftrightarrow} \operatorname{rect}\left(\frac{\omega}{2 W}\right) \tag{7}
\end{array}
$$

Unfortunately, MATLAB's $\operatorname{sinc}(t)$ function is defined to be $\frac{\sin (\pi t)}{\pi t}$, which leads to all sorts of confusion.
In this problem we will use the above defenitions of rect and sinc. Suppose that you apply the periodic signal

$$
\begin{equation*}
x(t)=1+2 \cos (5 \pi t)+3 \sin (8 \pi t) \tag{8}
\end{equation*}
$$

to an LTI system with impulse response

$$
\begin{equation*}
h(t)=8 \operatorname{sinc}(4 t) \cos (4 \pi t) \tag{9}
\end{equation*}
$$

(a) Sketch $x(t)$ and $h(t)$.
(b) Compute the fundamental radian frequency of $x(t)$.
(c) Compute the CTFT $X(j \omega)$.
(d) Compute the CTFT $H(j \omega)$.
(e) Sketch $|H(j \omega)|$ over $-10 \pi \leq \omega \leq 10 \pi$. Verify your sketch using MATLAB.
(f) Find the output CTFT $Y(j \omega)$ and $y(t)$.

Try to explain in words what the system is doing.
Problem 8 (ECE 345 Fall 2017 Midterm 2). Consider the following signal $x(t)$:

$$
\begin{equation*}
x(t)=e^{-3|t|} \cos \left(\omega_{c} t\right) \tag{10}
\end{equation*}
$$

where $\omega_{c}=100 \pi$.
(a) Calculate the CT Fourier transform $X(j \omega)$ of $x(t)$.
(b) Plot $X(j \omega)$.
(c) Suppose the signal $x(t)$ is passed through an LTI system with impulse response

$$
\begin{equation*}
h(t)=\frac{\sin (50 \pi t)}{\pi t} \tag{11}
\end{equation*}
$$

What is the output $y(t)$ of the LTI system? You can give your answer in the time or frequency domain.
(d) Instead, suppose you implement the following system, where $h(t)$ is the same LTI filter as (103):

Calculate $V(j \omega)$ and sketch it.
(e) Sketch the output $Y(j \omega)$.

Problem 9 (Nyquiste Rate, OW 7.3). Find the Nyquist rate of the following signals.
(a) $x(t)=1+\cos (1000 \pi t)+\cos (3000 \pi t)$
(b) $x(t)=\frac{\sin (4000 \pi t)}{\pi t}$

Problem 10 (Nyquiste Rate, OW 7.4(c)). If $x(t)$ has Nyquist rate ω_{0}, find the Nyquist rate of $y(t)=(x(t))^{2}$.

