ECE 345: Linear Systems and Signals

Homework 6

Problem 1 (Computing inverse DTFTs). Compute the time domain signals corresponding to the following DTFTs.
(a) $X\left(e^{j \omega}\right)=1$ for $\pi / 4 \leq|\omega| \leq 3 \pi / 4$ and 0 elsewhere.
(b) $X\left(e^{j \omega}\right)=e^{-j \omega / 2}$ for $-\pi \leq \omega \leq \pi$
(c) $X\left(e^{j \omega}\right)=\cos ^{2}(\omega)+\sin ^{2}(3 \omega)$.
(d) $X\left(e^{j \omega}\right)=\frac{e^{-j \omega}-\frac{1}{5}}{1-\frac{1}{5} e^{-j \omega}}$.

Problem 2 (Using DTFT properties). Suppose $x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j \omega}\right)$. Use DTFT properties to find the DTFTs of the following signals
(a) $x_{1}[n]=x[1-n]+x[-1-n]$
(b) $x_{3}[n]=(n-1)^{2} x[n]$

Problem 3 (A mystery signal!). Suppose you know the following four facts about a real signal $x[n]$ with DTFT $X\left(e^{j \omega}\right)$:

1. $x[n]=0$ for $n>0$.
2. $x[0]>0$
3. $\mathfrak{I m}\left\{X\left(e^{j \omega}\right)\right\}=\sin (\omega)-\sin (2 \omega)$
4. $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega=3$

Determine $x[n]$. Hint: You may want to use Parseval's relation.
Problem 4 (Filtering). Sincs and rects are important in DT signal processing as well.
(a) Find the DTFT of $h[n]=\frac{\sin (W n)}{\pi n}$ and sketch it.
(b) Suppose

$$
\begin{equation*}
x[n]=\sin \left(\frac{\pi n}{8}\right)-2 \cos \left(\frac{\pi n}{4}\right) \tag{1}
\end{equation*}
$$

Find the DTFT of $x[n]$.
(c) Find the output of the following systems with input $x[n]$:

$$
\begin{align*}
& h_{1}[n]=\frac{\sin (\pi n / 6)}{\pi n} \tag{2}\\
& h_{2}[n]=\frac{\sin (\pi n / 6)}{\pi n}+\frac{\sin (\pi n / 2)}{\pi n} \tag{3}\\
& h_{3}[n]=\frac{\sin (\pi n / 6) \sin (\pi n / 3)}{\pi^{2} n^{2}} \tag{4}\\
& h_{4}[n]=\frac{\sin (\pi n / 6) \sin (\pi n / 3)}{\pi n} \tag{5}
\end{align*}
$$

Problem 5. Using the MATLAB function freqz, compute and plot the real and imaginary parts as well as magnitude and phase functions of the following DTFTs:

$$
\begin{align*}
& X\left(e^{j \omega}\right)=\frac{1}{1-0.4 e^{-j \omega}} \tag{6}\\
& Y\left(e^{j \omega}\right)=\frac{0.2+0.4 e^{-j \omega}+e^{-2 j \omega}}{1+0.4 e^{-j \omega}+0.2 e^{-2 j \omega}} \tag{7}
\end{align*}
$$

Make sure to use appropriate frequency points while computing and plotting the DTFTs. Also, use the MATLAB function unwrap to unwrap the phase functions.

