ECE 345

Linear Systems and Signals
Eigenfunctions of CT LTI systems

Anand D. Sarwate

Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey

2020

\\\\"//Z

N\
. Rutgers Sarwate




ECE 345

Learning objectives

The learning objectives for this section are:

® use the eigenfunction property to compute the output of LT]
systems with complex exponential input

® show that LTI systems cannot add new frequencies to the input
function
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Eigenvectors and eigenfunctions

Remember that for DT systems we saw that complex exponentials are
eigenfunctions of LTI systems. The same property holds for CT LT

systems. Suppose z(t) = e/“0ot, Then‘L Csses Loct
et o0 3 T
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co”” / h(r)elwol=7) g7 — 6J°"Ot/ h(T)eijTdTl (1)
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If we define , o J n @wd o
| o )
H(jw) = /_C><> h(T)e 7*"dr et (2)
— )
we get
h(t) x 2“0t = H (jwg)e?“ot. (3)

N‘VVWH(Jw) is the Continuous Time Fourier Transform (more on that later).
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How a system acts on a complex exponential
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The quantity

L ——

H(jw) = / h(t)e 9t (4
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is a complex-valued functlon so putting it in magnitude-phase form
H(jw) \W for z(t) = e/“0! we get

%r\.g )w') a_p-————~ —)

(h* x)(t) = [H (juwo)|e? <ot 1L 5w0) (5)

e’

That means the LTI system changes the magnitude and phase ot a

complex exponential but not the frequency.
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Implications

ejwot

e | T| systems multiply complex exponentials signals by a
(complex-valued) constant. This is why we say complex
exponentials are eigenfunctions of LTI systems.

® LTI systems cannot create new frequencies not present in the
original signal.

® Linear combinations of complex exponentials (example: cosines)

oroduce linear combinations of complex exponentials at the same
frequencies.
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Symmetry

Suppose h(t) is a real-valued signal. Take the complex conjugate of H:

So as a function of w, H(jw) is conji?ate symmetric. This implies that

’\———;;/6%
|H(jw)| is even A H(jw) is odd (9)
Prove that the D_LL&[;IQM is also conJugate symmetric with

even magnitude and odd phase.
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An example

Suppose h(t) = e 3tu(t). Then

H(jw) :/ e SteIWhy(t)dt (10)
= Z e~ B3It gy (11)
1«
S = 57— lesien (12)
“O 3+ Jw cor
5 s
x W 3 LW

(A = J (13)

P 94 w? = 79+ w? qneI<

7 5O | 3
_ ejjtan_l(w/S)%; (14)
9 + w? —

——

This means an input /“0! gets a gain of L and a phase shift of

9+w8
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Example continued

Suppose h(t) = e >tu(t) and x(t) = cos(6mt). Eulerizing x(t):

1L <
x(t) = §€]6Wt 26_29_75’54__ (15)
So now the output y = (z * h)(t), we have (since wy = +67 for the
first term and —67 for the second term) : - (o — 9T
- 12?3
1 1 - o1 1 1 1 - o1 =1
+) — g67t—ytan™ " 5 —167t— tan_ = (16
vt = 591 3602 20+ 3672 (16
1 1 T n—1 L 1 —j(6mt—tan— ! L
y(t) = 5 e (§eﬂ<6 e ay) 4 eI %)) (17)
1 1
= 9 3.2 °°° (67# — tan %> (18)
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The general case

For general h(t) and x(t) = cos(wt) we get

e S
]. 26—]wt> E‘J (19)

y(t) = H(jw) (§6jwt +

™

~—

s o= |H(Jw)\—€‘7@t+4H @) 1 | F (— m\— et LH(=jw)) (20)

Q\r"“ 1 N / ,//
= [H(juo) | 51D 1 |H (o) e #-<H69) (1)
= |H(jw)| cos(w(t) + £LH(jw)). (22)

This is called the sinusoidal response of the system.

Check for yourself: what is the formula for an input of sin(wt)?
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Try it yourself

Find the sinusoidal responses for these combinations of input and
Impulse response:

z(t) = cos(1007n), h(t) = e~ 4 2u(t) (23)
x(t) = cos(4nt), h(t) = o(t — 3) (24)
z(t) = dsin(8mt +7/3), h(t) = e “u(t) (25)

Make up some on your own!
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