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Learning objectives

The learning objectives for this section are:

• use the eigenfunction property to compute the output of LTI
systems with complex exponential input

• show that LTI systems cannot add new frequencies to the input
function
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Eigenvectors and eigenfunctions

Remember that for DT systems we saw that complex exponentials are
eigenfunctions of LTI systems. The same property holds for CT LTI
systems. Suppose x(t) = e

j!0t. Then

Z 1

�1
h(⌧)ej!0(t�⌧)

d⌧ = e
j!0t

Z 1

�1
h(⌧)e�j!0⌧d⌧ (1)

If we define

H(j!) =

Z 1

�1
h(⌧)e�j!⌧

d⌧ (2)

we get

h(t) ⇤ e
j!0t = H(j!0)e

j!0t. (3)

H(j!) is the Continuous Time Fourier Transform (more on that later).
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How a system acts on a complex exponential

h[n]
e
j�0t H(j!0)e

j�0t

The quantity

H(j!) =

Z 1

�1
h(t)e�j!t

dt (4)

is a complex-valued function, so putting it in magnitude-phase form
|H(j!)|e]H(j!) , for x(t) = e

j!0t we get

(h ⇤ x)(t) = |H(j!0)|ej(!0t+]H(j!0)) (5)

That means the LTI system changes the magnitude and phase of a
complex exponential but not the frequency.
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Implications

h[n]
e
j�0t H(j!0)e

j�0t

• LTI systems multiply complex exponentials signals by a
(complex-valued) constant. This is why we say complex
exponentials are eigenfunctions of LTI systems.

• LTI systems cannot create new frequencies not present in the
original signal.

• Linear combinations of complex exponentials (example: cosines)
produce linear combinations of complex exponentials at the same
frequencies.
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Symmetry

Suppose h(t) is a real-valued signal. Take the complex conjugate of H:

H
⇤(j!) =

✓Z 1

�1
h(t)e�j!t

dt

◆⇤
(6)

=

Z 1

�1
h
⇤(t)ej!tdt (7)

= H(�j!) (8)

So as a function of !, H(j!) is conjuate symmetric. This implies that

|H(j!)| is even ]H(j!) is odd (9)

Prove that the DT version H(ej!) is also conjugate symmetric with
even magnitude and odd phase.
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An example

Suppose h(t) = e
�3t

u(t). Then

H(j!) =

Z 1

�1
e
�3t

e
�j!t

u(t)dt (10)

=

Z 1

0
e
�(3+j!)t

dt (11)

=
1

3 + j!
(12)

=
3

9 + !2
� j

!

9 + !2
(13)

=
1

9 + !2
e
�j tan�1(!/3)

. (14)

This means an input e
j!0t gets a gain of 1

9+!
2
0
and a phase shift of

� tan�1(!0/3).
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Example continued

Suppose h(t) = e
�3t

u(t) and x(t) = cos(6⇡t). Eulerizing x(t):

x(t) =
1

2
e
j6⇡t +

1

2
e
�j6⇡t (15)

So now the output y = (x ⇤ h)(t), we have (since !0 = +6⇡ for the
first term and �6⇡ for the second term) :

y(t) =
1

2

1

9 + 36⇡2
e
j6⇡t�j tan�1 1

2⇡ +
1

2

1

9 + 36⇡2
e
�j6⇡t�j tan�1 �1

2⇡ (16)

y(t) =
1

9 + 36⇡2

✓
1

2
e
j(6⇡t�tan�1 1

2⇡ ) +
1

2
e
�j(6⇡t�tan�1 1

2⇡ )

◆
(17)

=
1

9 + 36⇡2
cos

✓
6⇡t � tan�1 1

2⇡

◆
(18)
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The general case

For general h(t) and x(t) = cos(!t) we get

y(t) = H(j!)

✓
1

2
e
j!t +

1

2
e
�j!t

◆
(19)

= |H(j!)|1
2
e
j!t+]H(j!) + |H(�j!)|1

2
e
�j!t+]H(�j!) (20)

= |H(j!)|1
2
e
j!t+]H(j!) + |H(j!)|1

2
e
�j!t�]H(j!) (21)

= |H(j!)| cos(!(t) + ]H(j!)). (22)

This is called the sinusoidal response of the system.

Check for yourself: what is the formula for an input of sin(!t)?
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Try it yourself

Problem

Find the sinusoidal responses for these combinations of input and
impulse response:

x(t) = cos(100⇡n), h(t) = e
�4t+2

u(t) (23)

x(t) = cos(4⇡t), h(t) = �(t � 3) (24)

x(t) = 4 sin(8⇡t + ⇡/3), h(t) = e
�2t

u(t) (25)

Make up some on your own!
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