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Learning objectives

The learning objective for this section is:

• show that the output of a DT LTI system is the convolution of
the input with the impulse response
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The impulse response

H�[n] h[n]

H�(t) h(t)

Define the impulse response of an LTI system to be the output signal
when the input is a unit impulse (�[n] in DT or �(t) in CT).
We will next show that

y[n] =
1X

k=�1
x[k]h[n � k], (1)

which is called the DT convolution of x and h.
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And now in pictures
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In equations
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Putting it together
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The convolution theorem

Theorem

Let H be a DT linear time-invariant (LTI) system with impulse
response h[n]. Then the output y[n] to an input signal x[n] is the
discrete convolution of x[n] and h[n]:

y[n] =
1X

k=�1
x[k]h[n � k] (3)

This means that the impulse response contains everything you need to
know about the system.

We will often call LTI systems filters and talk about “the filter h[n]”
meaning “the filter with impulse response h[n].”
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One interpretation: ringing the bell

Looking at the formula

y[n] =
1X

k=�1
x[k]h[n � k] (4)

we can interpret it in the folllowing way:

• At time k, x[k]�[n � k] enters the system.

• The system responds by copying h[n] delayed by k, or h[n � k]
and adding it to the output.

• The output is the superposition of all these copies.

It’s like at each time k the system is a bell which is hit with a force
x[k] and which produces h[n] delayed by k.
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