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Learning objectives

The learning objectives for this section are:

® explain the unit-area in zero-time property of Dirac (CT) impulse
function as a limit of box functions

® apply the sifting property of the Dirac delta function

® use Impulse trains to periodically sample a signal
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Unit impulses as generalized functions

1.0- o(t)

0.8 =
0.6=
0.4-

0.2=

0.0-

—1.0 —0.5 0.0 0.5 1.0

There are many ways to interpret the unit impulse function in
continuous time. It is what is called a generalized function (or
distribution) and getting a rigorous mathematical treatment is a little
beyond the scope of this class.
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How to think about the o-function
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Think of §(¢) as a function that has an “area under the curve” of 1
entirely concentrated at ¢t = 0. So it only “goes into action” when it
appears in an integral.

Two ideas should come to mind when you see §(t): something is being
sampled or something Is being “copied”.
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Shifting delta functions
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Time and amplitude shifts work the same way:

_oié(t —T) (1)

acts as a total area o concentrated at ¢t = 7
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Sampling property
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This is the sifting or sampling property of the (%):

x(7) = /OO x(t)o(t — 7)dt (2)

The unit area is scaled by the function value at 7 — the product
x(t)6(t — 7) has area x(t) at t = 7. When we integrate we get this
area x(7) and that's it.
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Intuition as a limit
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Intuitively we can think of §(¢) as a limit of rectangles

5(t) = lim = rect G) (3)
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Intuition as a limit

2rect(2t)

Intuitively we can think of §(¢) as a limit of rectangles

5(t) = lim % rect (é) (3)
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Intuition as a limit
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5(t) = lim = rect (f> (3)

e—0 € €

N/
‘

Rutgers Sarwate




ECE 345

Intuition as a limit
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Intuition as a limit
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Intuitively we can think of 6(¢) as a limit of rectangles
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Time scaling

How does time-scaling (dilation/compression) affect 6(¢)? Looking a
the previous limit of rectangles can help:

® If we replace rect(t) — rect(at) then the rectangle is of height 1

1

but width ﬁ so the total area is ol

® Taking the limit, we get

(at) = F}z\‘“” (4

s

Extending this:

i n=s(a(-) = LoD o

e
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An example

Use the sampling property of the impulse function to evaluate the

integra/ w\/\_a)- .3 Nt af =%
o 1\’“[ t
tg_. e ==

@ Rewrite the § function: § (7 — 2) = 44(t — 8).
® Apply the u(t) window to the integral.
©® Sample the function at the location of the 9, which is t = &.
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Impulse trains

1.2 =

10=A A AN N N N AN N
0.8=

o
0.6 =

0.4=

0.2=

0.0-
0.0 0.5 1.0 1.5 2.0

An impulse train is two-sided signal containing evenly-spaced 0
functions:

gty = 3 6t~ kTy). (7)

k=—o0
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Impulse trains and sampling

1.2=
e A N N N N (S
0.8=
0.6-
0.4-

0.2=

0.0~-

i I I I I
0.0 0.5 1.0 1.5 2.0

Impulse trains can be used to model a sampled signal:

p(t) Y 6(t—kTp) = »  a(kTp)s(t — kTp) (8)
k=—0o0 k=—0o0 &C\A-F\
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Impulse trains and sampling
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Impulse trains and sampling

Impulse trains can be used to model a sampled signal:

w(t) Y St—kTp) = Y a(kTy)é(t — kTp) (8)
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