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Learning objectives

The learning objectives for this section are:
® find the power and energy for signals computationally

® finding the period of a periodic signal
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DT energy of a signal

5
n (time)

For DT signals, the energy of a signal is easy to calculate:

Code Example 1: DT signal energy

. xsig = @(n) cos(0.4*pi*n)@ (n >= 0) .*x (n < 8);
n = 0:10;

x = xsig(n); ~ 1 Q. 2
Ex = sum (X . *X) : / LV\_ KYVL’& &\0367")
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DT power of a signal

example signal
I

n (time)

For a periodic signal, we can calculate the power in one period:

Code Example 2: DT signal power
- xsig = @(n) cos(0.4*pi*n); 7% period = 5

/

n =10:4; - S~ — K
J — ‘Z—
x = xsig(n); N Qf\xfw'.'l
PX = gsum(x.*x) / 5; e
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CT energy of a signal

O e G uwgu C s
/ : <& At - RO

n (time) At

For CT, you have to remember the sampling interval 1/ f,:

Code Example 3: CT signal energy
fs = ted; /AE=/s,
t = (-3):(1/fs) :5;
x = (.73 - 2%t.72 + t - 1) .*x (t > -2) .x (t < 4);
Ex = sum(x."~2)/fs; "57,%‘/\1_ — do=ade asp o<
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CT power

| x(t) = cos(4t)

For CT signals, we have a bit of a challenge. Even for periodic signals,
what if the period is not an integer multiple of 1/ f7?

@ Option 1: empirically calculate the limit
: 1 T
imy o0 57 [, |z(t)|*dt.
® Option 2: for periodic signals, estimate the period of the signal
and compute — fOTO 2(t)|dt.
0
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Option 1: empirical limit

Code Example 4: numerical limit for CT power

fs = 1le6;
xsig = @(t) cos(4%*t); éNJ”ﬁf>
t = —1000(1/f8)1000, /}('SM

QX = (sum(x.*x)/fs) %/ 2000;

@ computationally intensive — try it out!

® how do you know when you reach the limit?
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Option 2: estimate the period with autocorrelation

N _)AAAA.

’71‘.{—'1—0)
It we delay a periodic signal by an integer multiple of 1y then we get

the same signal. Idea: find the delay where the signal “lines up.”
We use the autocorrelation function to do this:

T CQW“U%O.\'&
1 0]

Ryr(7) = —/ $(t)1@%t — 7)dt (1)

But we don't know 1! Just take a large enough segment of time and
see where |

i vV = \453

Ry.(7) = / x(t)x™(t — 7)dt (2)

T
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Is large. The peak is at 7 = 0 and the next largest should be %1j.
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Option 2 in MATLAB

We can use the xcorr function in MATLAB to do this:

Code Example 5: using the xcorr function
fs = 1le4;
xsig = Q@(t) cos(4x*xt);
t = -20:(1/fs):20;,—
[Rxx ,lags] = Xcorf%&sig(t));
figure; plot(lags/fs,Rxx/fs,'LineWidth',3);
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We want the second-largest peak.
Rutgers Sarwate



ECE 345

Finding the second-largest peak

For z:(t) = cos(4t) the period Ty = 2F = Z. Check to see if this is the
case!

Code Example 6: finding the second-largest peak

[pks ,locs] = findpeaks (Rxx);

[srt,idx] = sort(pks, 'descend'); Cc \ooSe ?«Wi
second_peak = locs( idx(2) );g/’/”/
second_peak_lag = lags(second_peak)/fs;

T_O = abs( second_peak_lag );
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Calculating the power

The last part is to calculate the power, which we can do by calculating
the total energy in one period and dividing by 1j.

Code Example 7: finding the second-largest peak

t2 = 0:(1/£fs):T_0; IV IEN
x = xsig(t2); <
Px = (sum(x."2)/fs)/T_0;

Compare this to what you get by integration.
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Try it yourself

Find the energy and power numerically for signals that we have seen in
already. In particular, try out these calculations for complex-valued
signals. Look at the documentation for xcorr to see how it works for

complex signals.
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