Notes on Laplace Transforms

Objectives:

- be able to compute Laplace transforms using the definition
- explain the region of convergence (ROC) and how to find at
- use ROC properties to find the ROC for linear combinations of signals
- identify signal lsystem properties from the Laplace transform and ROC
- use Laplace trarsfon parrs and properties to compute new Laplace transforms.

Main
Laplace Transforms
A major theme in the study of LTI systems is the notion of a frequency-domain view of how systems operate. We have seen that complex exponentials are eigenfunction of LTI systems:

$$
\begin{array}{ll}
\left(e^{s t} * h(t)\right)=H(s) e^{s t} & s \in \mathbb{C} \\
e^{s t} \rightarrow h(t) \rightarrow H(s) e^{s t} & H(s) \in \mathbb{C}
\end{array}
$$

That is, if we put a complex exponential into an LTI system, we get the same complex exponential at the output, scaled by a complex number $H(s)$ that depends on s. Thus scaling factor has a magnitude and phase:

$$
H(s)=|H(s)| e^{j \Varangle H(s)}
$$

So we can see that $e^{s t}$ gets a gain of $|H(s)|$ and a phase shift of $\Varangle H(s)$.

This scaling factor $H(s)$ is a function of the system impulse response:

$$
H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t
$$

This is the bilateral Laplace transform of $h(t)$.

Def
Def. The bilateral Laplace transform of a CT signal $x(t)$ is

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

The unilateral Laplace transform of $x(t)$ is

$$
X_{v}(s)=\int_{0}^{\infty} x(t) e^{-s t} d t
$$

Not
Most textbooks discuss either the unilateral or bilateral Laplace transform in more detail and leave the of her as a side note. Mathematically, the difference is just in the limits of migration:

$$
\begin{aligned}
& \text { bilateral } \longrightarrow \int_{-\infty}^{\infty} \\
& \text { criblateral } \longrightarrow \int_{0}^{\infty}
\end{aligned}
$$

So why do we need two transforms??! This is confusing! It turns out they are useful for different things:
bilateral \longrightarrow wore general, understand noncausal systems, etc.
Unilateral \longrightarrow gives more insight info cavil systems, can be used to solve diff eq.s with nonzero initial conditions. etc.

For now we will focus on bilateral Laplace transforms and will cone bach to the unilateral case later.

Main
What about the inverse transform? How can we go from $H(s)$ back to $h(t)$? This turns out to be a more complex problem (pons infended).

Let's do sone examples first.

Ex
Example: find the Laplace transform of

$$
x(t)=e^{-a t} v(t) \quad a \in \mathbb{R} \quad a>0
$$

Just plug in and do the integral:

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} e^{-a t} e^{-s t} v(t) d t \\
& =\int_{0}^{\infty} e^{-(s+a) t} d t \\
& =\frac{1}{s+a}
\end{aligned}
$$

$C_{u}(t)$ wakes the signal causal, So unilateral and bilateral are the sauk!

But something is missing here: $S \in \mathbb{C}$ is a complex number. Let's write it as $\delta=\sigma+j \omega$:

$$
X(s)=\frac{1}{(\sigma+a)+j \omega} \quad \text { This only holds if }
$$

So

$$
X(s)=\frac{1}{s+j \omega} \text { if } \operatorname{Re}\{s\}>-a
$$

Main
This example shows an important concept when dealing with Laplace Transforms (and other transforms): the formula for $X(S)$ in the s domain only holds for certain values of s. In the example, $\operatorname{Re}\{s\}>-a$. If we visualize the complex plane:

this set
$\{s: \operatorname{Re}\{s\} 7-a\}$
is called the
Regrown of Convergence (ROC) of $X(s)$

The ROC is very important in understanding the behavior and properties of LTI systems.

Not
We will vie the following notation to dexribe Laplace transform pairs:
$x(t) \stackrel{\mathcal{L}}{\rightleftarrows} X(s)$, ROC description
So for example, we just showed in the example that

$$
e^{-a t} v(t) \leftrightarrows \mathscr{L} \longleftrightarrow \frac{1}{s+a}, \operatorname{Re}\{s\} \geq-a
$$

We use a lower case x for the true domain and upper case X for the s-domain (or Laplace domain)
$M_{\text {ain }}$
As a special case of the example, we can set
$a=0$ to get $x(t)=v(t)$:

$$
v(t) \longleftrightarrow \mathscr{L} \longleftrightarrow \frac{1}{s}, \operatorname{Re}\{s\}>0
$$

If we thanh back to our description of $v(t)$ as a system, this says that an integrator has a Laplace transform of $1 / \mathrm{s}$.

Ex
Example: Bilateral transforms are needed to understand nou-cansal systems. Suppose

$$
x(t)=-e^{-a t} v(-t)
$$

Ben

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty}-e^{-a t} v(-t) e^{-s t} d t \\
& =-\int_{-\infty}^{0} e^{-(s+a) t} d t \\
& =\frac{1}{s+a} \quad \operatorname{Re}\{s\}<-a
\end{aligned}
$$

This is the opposite from before!

Man
Rational Transforms
One nice property of Laplace Transforms is that they are linear:

If $X_{1} \stackrel{L}{\longleftrightarrow} X_{1}(3), R_{1}$
then

$$
a x_{1}(t)+b x_{2}(t) \stackrel{L}{\longleftrightarrow} a_{1} X_{1}(s)+a_{2} X_{2}(s)
$$

ROC contains

$$
R_{1} \cap R_{2}
$$

Note: $R_{1} \cap R_{2}$ might be empty! In this case the Laplace transform doesu't converge anywhere!

Ex. Suppose $x(t)=3 e^{-2 t} v(t)-2 e^{-t} v(t)$
From before,

$$
\begin{array}{ll}
3 e^{-2 t} v(t) \stackrel{\mathcal{L}}{\leftrightarrows} \frac{3}{s+2} & \operatorname{Re}\{s\}>-2 \\
2 e^{-t} v(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{-2}{s+1} & \operatorname{Re}\{s\}>-1
\end{array}
$$

Intersecting the two ROC's:

\bigcap

we get

$$
x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s-1}{s^{2}+3 s+2}, \quad \operatorname{Re}\{s\}>-1
$$

Man
So why do we say the BOC contains $R_{1} \cap R_{2}$? If turns out we can have polerzero cancellation.

Ex
Example: Suppose $x(t)=x_{1}(t)-x_{2}(t)$
where

$$
\begin{array}{ll}
X_{2}(s)=\frac{1}{s+1} & \operatorname{Re}\{s\}>-1 \\
X_{2}(s)=\frac{1}{(s+1)(s+2)} & \operatorname{Re}\{s\}>-1
\end{array}
$$

Then

$$
\begin{aligned}
& X_{1}(s)-X_{2}(s)=\frac{s+2-1}{(s+1)(s+2)}=\frac{(s+1)}{(s+1)(s+2)} \\
&=\frac{1}{s+2}
\end{aligned}
$$

The pole at $5=1$ was cancelled out by a zero!

The ROC for this is $\operatorname{Re}\{s\}>-2$, which contains $R_{1} \cap R_{2}=\operatorname{Re}\{s\}>-1$.

R_{1}

R_{2}

$$
R_{1} \cap R_{2} \subset R
$$

Ex
Ex. Suppose $x(t)=e^{-2 t} v(t)+e^{-t}(\cos (3 t)) v(t)$ What is its Laplace transform?
we have

$$
e^{-2 t} v(t) \longleftrightarrow \mathcal{L} \longrightarrow \frac{1}{s+2} \quad \operatorname{Re}\{s\}>-2
$$

but how do we deal with the otter term?

Euler's relation!

$$
\begin{aligned}
& e^{-t} \cos (3 t)=\frac{1}{2} e^{-(1-3 j) t}+\frac{1}{2} e^{-(1+3 j) t} \\
& \frac{1}{2} e^{-(1-3 j) t} v(t) \rightleftarrows \mathscr{L} \longrightarrow \frac{1}{s+(1-3 j)} \operatorname{Re}\{s\}>-1 \\
& \frac{1}{2} e^{-(1+3 j) t} o(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+(1+3 j)} \quad \mathrm{O}_{\mathrm{j}}\{s\}>-1
\end{aligned}
$$

Intersecting the three ROCs, we get

$$
\begin{aligned}
& \operatorname{Re}\{s\} \geq-1 \\
& X(s)=\frac{1}{s+2}+\frac{1}{2} \frac{1}{s+(1-3 j)}+\frac{1}{2} \frac{1}{s+(1+3 j)} \\
&= \frac{2 s^{2}+5 s+12}{\left(s^{2}+2 s+20\right)(s+2)} \quad \text { (mme, Algebra) }
\end{aligned}
$$

Man
All of our examples so far have had the nice property that the Laplace transform ss rational - it is the ratio of faro polynomials:

$$
X(s)=\frac{N(s)}{D(s)} \longleftarrow \text { nonerator }
$$

This is happening because all of orr $x(t)$ examples are linear combinations of complex exporentials.

Not
We will write
LCCE for Linear Combination of Complex Exponentrals

Main
Since each complex exponential contributes a term like $\frac{1}{s+a}$,
an LCCE

$$
\sum_{i=1}^{N} c_{i} e^{-a_{i} t} v(t)
$$

becomes

$$
\sum_{i=1}^{N} \frac{c_{i}}{S+a_{i}}
$$

$$
\begin{gathered}
\operatorname{Re}\{s\}>-a_{i} i=1 \cdots N \\
N \\
\operatorname{Re}\{s\}>-\min _{i}\left\{a_{i}\right\}
\end{gathered}
$$

when you combine the terns, you get a rational function.

There is a lot we can understand from rational Laplace transforms. One point of connection between rational transforms and things you may have seen before is through the solution of Linear Constant Coefficient Differential Equations (LCCDEs). We will refurn to that connection later.

Poles and Zeros: If $X(s)=\frac{N(s)}{D(s)}$ where
$N(S)$ and $D(3)$ are polynomials in S, we can factorize Them:

$$
X(s)=C \frac{\prod_{i=1}^{N}\left(s-a_{i}\right)}{\prod_{j=1}^{M}\left(s-b_{j}\right)}
$$

We call $\left\{a_{i}\right\}$ the zeros of $X(s)$ since $X\left(a_{i}\right)=0$ and we call $\left\{b_{j}\right\}$ the poles of $X(s)$ since $|X(s)| \rightarrow \infty$ as $s \rightarrow b_{j}$. That is, the poles are where $X(s)$ "blows up." The ROC of $X(s)$ cannot contain any poles - the poles are points where $X(s)$ doesn't converge.
The diagram we sam before is a pole-zero plot of $X(3)$: we put an x for the poles and a o for the zeros.

Ex
Ex. For our previous example:

$$
\begin{array}{rlr}
X(s) & =\frac{2 s^{2}+5 s+12}{\left(s^{2}+2 s+18\right)(s+2)} \quad & \frac{2 s / 2 \pm \sqrt{\frac{25}{4}-24}}{2} \\
& =\frac{-\frac{5}{4} \pm \frac{1}{4} \sqrt{71} j}{(s-(-1+3 j))(s-(-1-3 j))(s+2)} \\
& =2 \frac{\left(s-\left(-5 / 4+\frac{1}{4} \sqrt{71} j\right)\right)(s-(-5 / 4-1 / 4 \sqrt{71} j))}{(s-(-1+3 j))(s-(-1-3 j))(s+2)}
\end{array}
$$

So

$$
\begin{aligned}
& a_{1}=-5 / 4+\frac{1}{4} \sqrt{74} j \\
& a_{2}=-5 / 4-\frac{1}{4} \sqrt{71} j \\
& b_{1}=-1+3 j \\
& b_{2}=-1-3 j \\
& b_{3}=-2
\end{aligned}
$$

The pole-zero diagram
(note, not to scale).

Main
As you can see, pole-zero diagrams can involve sone messy calculations and the exact locations of the poles and zeros may be messy as well. A fee things to keep in mind:

- In practice much filter design is done graphically - click to place the poles and zeros. The MAJLAB filter design toolbox bets you do this.
- When designing control systems, the goal is often to use feedback to more the overall system poles and zeros into a more favorable position. This is the heart of the
"root locus" method - it looks a bit like an (American) football play diagram

The ROC and Segnal/System Properties
We can tell a lot about a signal or system by looking at the Laplace transform:

1) The ROC of $X(s)$ consists of strips parallel to the imagmany axis.
\rightarrow this is true of all of the examples we have seen so far.
2) For rational $X(S)$, the $R O C$ contains no poles.
3) If $x(t)$ is of finite duration and is absolutely integrable, then the ROC is The entire complex plane.
This follows because te term $e^{\text {st }}$
cannot be cone arbitrarily large over the duration of $x(t)$: decaying. or grown g exponential exporentall

So $\int_{T_{1}}^{T_{2}}\left|e^{-3 t} x(t)\right| d t<\infty$, ie it converges

Note: absolute integrability was our condition for a system to be stable.
4) If $x(t)$ is right-sided $\left(=0\right.$ for $\left.t<T_{0}\right)$ and if the line $\left\{s: \operatorname{Re}\{s\}=\sigma_{0}\right\}$ is in the ROC, then

$$
\left\{s: \operatorname{Re}\{s\} \geq \sigma_{0}\right\}
$$

is in the ROC.
Note: causal signals are right-sided This says that if

$$
\int_{T_{0}}^{\infty} e^{-\sigma_{0} t} x(t) d t \quad \text { converges }
$$

$\tan \int_{T_{0}}^{\infty} e^{-\left(\sigma_{0}+\delta\right) t} x(t)$ converges.
5) If $x(t)$ is left-sided $\left(=0\right.$ for $\left.t>T_{0}\right)$ and of the line $\left\{s: \operatorname{Re}\{s\}=\sigma_{0}\right\}$ is in the ROC, then

$$
\left\{s: \operatorname{Re}\{s\}<\sigma_{0}\right\}
$$

rs m file ROC.
6) If $x(t)$ is fwo-sided and if the line $\left\{s: \operatorname{Re}\{s\}=\sigma_{0}\right\}$ is in the $R O C$ then the ROC consists of a strip in the s-plane that rududes this line.
7) If $X(s)$ is rational then the $R O C$ is bounded by poles or extends to infinity - If $X(s)$ is also right-sided then the ROC is The region to the right of the rightmost pole.

- If $X(s)$ is also left-sided flem Te ROC is the region to the left of the leftmost pole.
$1!!$
For a given Laplace trans form X(s) then, we might have many different possible ROCS and therefore several different tire domain signals may have the same $X(J)$. That is thy we need to specify both
$X(s)$ and the ROC.

Ex
Example: Suppose $X(s)=\frac{1}{(s+1)(s+2)}$
Then we have poles at $s=-1$ and $s=-2$. We have 3 choices for the ROC:

Right-sided

Left-sided

Two-sided

Ex
Example: Suppose

$$
X(s)=\frac{s^{2}-5 s+6}{\left(s^{2}+2 s+5\right)(s+3)}
$$

Then $\quad s^{2}+2 s+s \Rightarrow \frac{-2 \pm \sqrt{4-20}}{2}=-1 \pm 2 j$

$$
x(s)=\frac{(s-3)(s-2)}{\left(s-\left(-1-2_{j}\right)\right)\left(s-\left(-1+22_{j}\right)\right)(s+3)}
$$

Now remember: the poles are what walter for the ROC, not the zeros.

Right-sided

Left -sided

Two-sided

Main
What about system properties? We have similar sorts of connections between the transform/ROC and system properties.

Causality: If $h(t)$ is causal then the ROC of $H(s)$ is a right-half plane, i.e. it has the form $\operatorname{Re}\{s\} \geq \alpha$.
!!!
The converse is not true. If The ROC is a roght-half plane, all we can say is that $h(t)$ is right-sided. If may not be causal?

If $H(s)$ is rational then the $R O C$ is the right half -plane to the right of the rightmost pole.

Ex
Ex
Example: $h(t)=e^{-|t|}$
not causal

But first fund $H(s)$:

$$
\begin{aligned}
h(t)= & e^{-t} v(t)+e^{t} v(-t) \\
H(s)= & \frac{1}{s+1}-\frac{1}{s-1}=\frac{-2}{s^{2}-1} \\
& \operatorname{Re}\{s\}>-1 \quad \operatorname{Re}\{s\}<1
\end{aligned}
$$

so the ROC for $H(s)$ is $-1<\operatorname{Re}\{s\}<1$ This is not a roght-half plane.

Main
Stability: An LTI system is stable if and only if the $R O C$ includes the imaginary (j) axis $\{s: \operatorname{Re}\{s\}=0\}$.
phil
Thus shows how important the transform evaluated at $s=j \omega$ is. In this case we get

$$
H(\omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t
$$

This turns out to be the CT Fourier Transform (CTFT) of $h(t)$.

Ex
Example: Suppose $H(s)=\frac{s-1}{(s+2)(s-2)}$ There are 3 possible ROCs.

1) If the system is causal then the ROC is

$$
\operatorname{Re}\{s\}>2
$$

But this is unstable.
2) If the system is stable then the ROC has to be

$$
-1<\operatorname{Re}\{s\}<2
$$

causal + unstable

noncausal + stable

Main
Putting this together, we see that a causal system with rational $H(s)$ is stable if and only if all of the poles of $H(s)$ are in the left half of the s-plane. that is

$$
\operatorname{Re}\left\{b_{k}\right\}<0
$$

for all poles.

Invertibility: we have seen before that while an inverse system may exist, it may
not be stable or causal. Sometimes people call causal and stable systems realizable.
If $X(s)$ is rational, then finding an inverse system algebraically is "easy":

$$
X(s)=\frac{N(s)}{D(s)} \Rightarrow X_{i}(s)=\frac{D(s)}{N(s)}
$$

or

$$
X_{i}(s)=P_{N} \frac{\prod_{j=1}^{N}\left(s-b_{j}\right)}{\prod_{i=1}^{M}\left(s-a_{i}\right)}
$$

The poles of $x(3)$ become zeros of $X_{i}(3)$ and the zeros of $X(s)$ become poles of $X_{i}(s)$. If this pole-zero diagram can have a stable and causal fine-domain signal $x_{i}(t)$ then the system has a causal 2 stable inverse.

Ex
Example: $H C$
\vdots
\vdots
$-1+j \vdots$
\vdots
-0
-2
-11
$-1-j$
\vdots

$$
\begin{aligned}
H(s) & =\frac{s^{2}+3 s+2}{s^{2}+2 s+2} \\
& =\frac{(s+1)(s+2)}{(s+1+j)(s+1-j)}
\end{aligned} \quad \operatorname{Re}\{s\}>-1 . ~(s) s s
$$

Then $H_{i}(s)$

$$
=\frac{(s+1+j)(s+1-j)}{(s+1)(s+2)}-1+j \vdots
$$

We can find an
Roc for $H_{i}(s)$ so
that $h_{i}(t)$ is stable and causal.

Try Use partial fraction expansion on $H_{i}(3)$ above and find $h_{i}(t)$.

Try the example with $\frac{(s+1)(s-2)}{s^{2}+2 s+2}$. Can you find a stable and causal inverse?
ran n
Inverting Laplace Transforms
The last two examples show that a given $X(s)$ might correspond to several different $x(t)$ signals. So how can we frgove out what these $x(t)$ are?
For rafromal $X(s)$ we can use partialfraction expansion to break apart the transform into a sum of terms. For example, if all of the poles are simple (first-order) then

$$
x(s)=k+\sum_{h=1}^{N} \frac{c_{k}}{s-b_{h}}
$$

and given the ROC, we can map each form in the sum to $e^{b_{n} t} v(t)$ or - $e^{b_{h} t} v(-t)$. The Roc tells vs which terms should have right-sided and chick should have lef-sided transforms.

The easier case is where the numerator has smaller degree than the denominator. In this case,

$$
K=\lim _{s \rightarrow \infty} x(s)=0
$$

and

$$
X(s)=\sum_{k=1}^{N} \frac{c_{k}}{s-b_{k}}
$$

For each $k=1 \cdots N$,

Then add the tens up.

Ex
Example:

$$
X(s)=\frac{1}{(s+1)(s+2)} \quad \operatorname{Re}\{s\}>-1
$$

First, partial-fraction expansion:

$$
\begin{aligned}
& \left.X(s)(s+1)\right|_{s=-1}=1 \\
& \left.X(s)(s+2)\right|_{s=-2}=-1
\end{aligned}
$$

So

$$
x(s)=\frac{1}{s+1}-\frac{1}{s+2}
$$

Now rok at the ROC:

The ROC is to the right of both poles, so

$$
x(t)=e^{-t} v(t)-e^{-2 t} v(t)
$$

Right-sided

What if the ROC was $\operatorname{Re}\{s\}<-2$?

Left -sided

For the last case, the ROC could be $-2<$ Re $\{s\}<-2$

1	1	
1	1	
1	1	
	1	
	x	
1	1	
1	1	
1	1	

The ROC is to the left of -1 and to the right of -2 , so

$$
x(t)=-e^{-t} v(-t)-e^{-2 t} v(t)
$$

Two-sided

Main
More generally, we can invert a Laplace transform by integrating it over a vertical line $\{s: \operatorname{the}\{s\}=\sigma\}$ that is contained in the ROC.

$$
x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s
$$

This requires doing line integrals in \mathbb{C} which is a little too advanced for this class. We will generally stich to $X(s)$ made up out of signals whose transforms we know, lite rational $X(s)$.

Some Useful Laplace Transforms
Rational functions are great but there is a whole exciting world of Laplace transforms out there. You can find many Laplace transform tables on the internet, so the presentation here is not exhaustive.

The impulse function $\delta(t)$ is a bit weird, so let's see what happens when we transform it:

$$
\int_{-\infty}^{\infty} \delta(t) e^{-s t} d t=\int_{-\infty}^{\infty} \delta(t) e^{-s \cdot 0} d t=1
$$

What about the ROC? This holds for all s, So

$$
\delta(t) \longleftrightarrow \mathscr{L} 1 \quad \text { all } s \in \mathbb{C}
$$

What about a delay, $\delta\left(t-t_{0}\right)$?

$$
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-s t} d t=e^{-s t_{0}} \quad \text { for all }
$$

So

$$
\delta\left(t-t_{0}\right) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s t_{0}} \text { for all } s \in \mathbb{C}
$$

Integrators and differentiators
We already saw

$$
\begin{array}{ll}
v(t) \stackrel{L}{\longleftrightarrow} \frac{1}{s} & \operatorname{Re}\{s\}>0 \\
-v(-t) \longleftrightarrow \frac{1}{s} & \operatorname{Re}\{s\}<0
\end{array}
$$

We will show later that

$$
x(t) * h(t) \longleftrightarrow \mathscr{L} \longleftrightarrow X(s) H(s)
$$

This is superrimportant!
So if we interpret $v(t)$ as an integrator:

$$
x(t) * v(t)=\int_{-\infty}^{t} x(\varepsilon) d \tau
$$

Then if we integrate multiple fines

$$
x(t) * \frac{v(t) * v(t) \cdots * v(t)}{n \text { times }}
$$

Then we get i in. Bur what is this !

$$
\begin{array}{ll}
n=1 & v(t) \\
n=2 & r(t)=t v(t) \\
n=3 & \frac{1}{2} t^{2} v(t) \\
n=4 & \frac{1}{6} t^{3} v(t) \\
& \vdots \frac{1}{(n-1)!} t^{n-1} v(t)
\end{array}
$$

So

$$
\begin{aligned}
& \frac{t^{n-1}}{(n-1)!} v(t) \longleftrightarrow \frac{1}{s^{n}} \quad \operatorname{Re}\{s\}>0 \\
& -\frac{t^{n-1}}{(n-1)!} v(-t) \longleftrightarrow \frac{1}{s^{n}} \operatorname{Oe}\{s\}<0
\end{aligned}
$$

These are integrators. What about differentiation? well,

$$
\begin{array}{r}
r(t) \longleftrightarrow \frac{\mathcal{L}}{\mathscr{L}} \frac{1}{s^{2}} \\
\frac{d}{d t} r(t)=v(t) \longleftrightarrow \frac{1}{s}
\end{array}
$$

So it seems that to get $X(s)=s$ we need

$$
\frac{d}{d t} \delta(t) \longleftrightarrow \mathcal{L} \longleftrightarrow S \quad \text { for all } s \in \mathbb{C}
$$

Extrapolating from here,

$$
\frac{d^{n}}{(d t)^{n}} \delta(t) \longleftrightarrow \mathcal{L}^{n} \text { for all } s \in \mathbb{C}
$$

$!!!$
Taking the derivative of a delta function os preffy weird, but this is an mstance where explaining in detail might be too complicated.

Not
We will write $X(s)=\mathcal{L}\{x(t)\}$ for Laplace transforms when it is move convenient to do so.
phil
Integrators and differentiators are the "bread and butter" of analog control using circuits. Together with a simple gain, control systems built with these systems are called
Proportional - Integral - Derivative
or PID controllers.

Sinusoids and Complex exponential
Werve seen a dew of These:

$$
\begin{aligned}
& e^{-a t} v(t) \longleftrightarrow \frac{\mathcal{L}}{s+a} \quad \operatorname{Re}\{s\}>-a \\
& -e^{-a t} v(-t) \longleftrightarrow \mathcal{L}
\end{aligned} \quad \frac{1}{s+a} \quad \operatorname{Re}\{s\}<-a .
$$

Taking integrals:

$$
\begin{aligned}
& \begin{array}{l}
\frac{t^{n-1}}{(n-1)!} e^{-a t} v(t) \longleftrightarrow \stackrel{L}{\longleftrightarrow}
\end{array} \begin{array}{l}
\frac{1}{(s+a)^{n}} \\
\operatorname{Re}\{s\}>-a \\
-\frac{t^{n-1}}{(n-1)!} e^{-a t} v(-t) \longleftrightarrow \mathscr{L}
\end{array} \frac{1}{(s+a)^{n}} \operatorname{De}\{s\}<-a
\end{aligned}
$$

What about sines and cosines? They are just made up oof of complex exponential:

$$
\begin{gathered}
\cos \left(\omega_{0} t\right) v(t)=\left(\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}\right) v(t) \\
\mathcal{L}\left\{\cos \left(\omega_{0} t\right) v(t)\right\}=\frac{1}{2} \frac{1}{s-j \omega_{0}}+\frac{1}{2} \frac{1}{s+j \omega_{0}} \\
=\frac{s}{s^{2}+\omega_{0}^{2}} \quad \text { Re }\{s\}>0 \\
\sin \left(\omega_{0} t\right) v(t)=\left(\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t}\right) \\
\mathcal{L}\left\{\sin \left(\omega_{0} t\right) u(t)\right\}=\frac{1 / 2 j}{s-j \omega_{0}}-\frac{1 / 2 j}{s+j \omega_{0}} \\
=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \text { Re\{s\}>0}
\end{gathered}
$$

So

$$
\begin{aligned}
& \cos \left(\omega_{s} t\right) v(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{s^{2}+\omega_{0}^{2}} \operatorname{Re}\{s\}>0 \\
& \sin \left(\omega_{0} t\right) v(t) \longleftrightarrow \frac{\mathcal{L}}{} \quad \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \quad \operatorname{Re}\{s\}>0
\end{aligned}
$$

Ex Example: what about $e^{-a t} \cos \left(\omega_{0} t\right) v(t)$
Using Euler's relation:

$$
e^{-a t} \cos \left(\omega_{0} t\right)=e^{-a t}\left(\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}\right)
$$

So

$$
\begin{array}{r}
\mathcal{L}\left\{e^{-a t} \cos \left(\omega_{0} t\right)\right\}=\frac{1 / 2}{s+\left(\alpha-j \omega_{0}\right)}+\frac{1 / 2}{s+\left(\alpha+j \omega_{0}\right)} \\
=\frac{S+\alpha}{(s+\alpha)^{2}+\omega_{0}^{2}} \quad \operatorname{Re}\{s\}>-a
\end{array}
$$

Try Thy the same process to $e^{-a t} \sin \left(w_{0} t\right) v(t)$.

Main
Laplace Transform Properties
Armed with some basic transforms, we can find the Laplace transform of Sots of signals. To do this we need to understand the nice properties Laplace transforms have.

For all of these we will assure $\mathcal{L}\{x(t)\}=X(s)$ with ROC R, or for multiple signals

$$
\mathcal{L}\left\{x_{1}(t)\right\}=x_{1}(s), \mathcal{L}\left\{x_{2}(t)\right\}=x_{2}(s)
$$ with ROC R, with $\operatorname{ROC} R_{2}$, etc.

Linearity:

$$
\begin{array}{r}
a x_{1}(t)+b x_{2}(t) \stackrel{L}{\rightleftarrows} a X_{1}(s)+b X_{2}(s) \\
R O C \text { contains } R_{1} \cap R_{2}
\end{array}
$$

We saw this one before.

Time shift:

$$
x\left(t-t_{0}\right) \longleftrightarrow \mathscr{L} \longleftrightarrow e^{-s t_{0}} X(3)
$$

with BOC R
Try \square To show this, plug $x\left(t-t_{0}\right)$ into file definition and do a change of variables.
Main
$\xrightarrow{\text { S-Dowain Shift }} e^{S_{0} t} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X\left(s-s_{0}\right)$
So if $S_{0}>0$ then we shift the ROC to the right by s_{0}

$$
R O C=R+\operatorname{Re}\left\{S_{0}\right\}
$$

shift by so!

We can recover the example from above with this property. To show it, plug m to the definition.

Time scaling

$$
\begin{array}{r}
x(a t) \stackrel{\mathscr{L}}{\rightleftarrows} \frac{1}{|a|} \times\left(\frac{s}{a}\right) \\
R O C=a R
\end{array}
$$

So if $|a|<1$ then we are stretching $x(t)$ out to get $x(a t)$. The ROC shrinks by a factor of a too:

Example for $a=1 / 2$
If $\mid a l \geq 1$ then we are squishing $x(t)$ and the ROC expands by a factor of a.

Example for $a=2$

Conjugation:

$$
x^{*}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X^{*}\left(s^{*}\right) \quad R O C=\mathbb{R}
$$

This has a very note s \& X are conjugated useful implication: if $x(t)$ is real, then

$$
\begin{aligned}
& x(t)=x^{*}(t) \\
& x(s)=X^{*}\left(s^{*}\right)
\end{aligned}
$$

so if $X(s)$ has a pole/zero at $s=S_{0}$ then it also has a polelzero at $S=S_{0}^{*}$. That is, the poles and zeros appear in conjugate pairs.

Convolution

$$
\begin{aligned}
X_{1}(t) * x_{2}(t) \stackrel{\mathcal{L}}{\leftrightarrows} & X_{1}(s) X_{2}(s) \\
& R O C \text { contains } R_{1} \cap R_{2}
\end{aligned}
$$

This is one of the most important results on LTI systems:
"convolution in the time domain is multiplication in the transform domain"
Phil
We will see this fact in many forms - one for each transform, in fact. The whole reason to study transforms is to make convolution
easter to understand.

Main
Differentiation in time

$$
\frac{d}{d t} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s X(s) \quad R O C \text { contains } R
$$

We can show this by taking the derivative of the inverse transform:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{d}{d t} x(t)=\frac{d}{d t} \frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} e^{s t} X(s) d s \\
\text { pulling } \\
\text { the donative }=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} s e^{s t} X(s) d s
\end{array} . \quad \text { in }
\end{aligned}
$$

D.fferentration in frequency

$$
-t x(t) \rightleftarrows \mathscr{L} \longleftrightarrow \frac{d}{d s} x(s) \quad R O C=R
$$

Use the same trick to show fris using the franiform (not the inverse fran torn)

Phil
You may notice soke parallels between time 2 frequency transforms: $S X(s)$ and -t $x(t)$, etc. There is actually a nice theory of duality for many of these transforms but it's a bat out of scope for our class.

Ex
Example: What is the Laplace transform of $x(t)=t e^{-a t} v(t)$?
start with

$$
\begin{aligned}
e^{-a t} v(t) \rightleftarrows \mathcal{L} & \frac{1}{s+a} \text { Re }\{s\}>-a \\
t e^{-a t} v(t) \longleftarrow \mathcal{L} \longrightarrow & -\frac{d}{d s}\left(\frac{1}{s+a}\right) \\
= & \frac{1}{(s+a)^{2}}
\end{aligned}
$$

Try \mid Thy doing this one frow the definition. You may weed to do integration by parts.

See of you can find a general form for

$$
\mathscr{L}\left\{t^{n} e^{-a t} u(t)\right\}
$$

Main
Integration in time:

$$
\begin{aligned}
& \int_{-\infty}^{t} x(r) d \tau \rightleftarrows \mathscr{L} \quad \frac{1}{s} X(s) \quad \begin{array}{l}
\operatorname{ROC} \text { contains } \\
R \cap\{\operatorname{Re}\{s\}>0\}
\end{array}
\end{aligned}
$$

Remember, the integrator is not stable, so the ROC cannot contain the imaginary axis.

Initial and Final Value Teonens
We can sometimes get more information about the time domain signal by looking at the Laplace transforms.

If $x(t)=0$ for $t<0$ (ie. is causal) and has no δ functions on other singularities at $t=0$, then

$$
\begin{aligned}
& x\left(\mathrm{O}^{+}\right)=\lim _{s \rightarrow \infty} s X(s) \quad \begin{array}{c}
\text { initial } \\
\text { value } \\
\text { theorem }
\end{array} \\
& \text { approaching from } \\
& \text { the right }
\end{aligned}
$$

If $x(t)$ has a finite limit as $t \rightarrow \infty$ Then

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(3)
$$

theorem

These are handy when working with rational transforms.

