Unilateral Laplace Transforms

Learning Objectives
Take unilateral Laplace transforms
Use transform properties to simplify transforms Explain the connection between the CCCDE and LTI system analysis.
Solve LCCDEs using Laplace transforms
Find the zero-input/zero-state outputs of an CTI system based on an LCCDE with initial connections
Comprise the transient and steady state behavior sf systems governed by LCCDEs Cor equivalently, with a rational transfer function).

Man
The unilateral Laplace transform is a special case of the bilateral Laplace transform restricted to $x(t)$ that are $=0$ for $t<0$.

Since causal LTI systems have an impulse response that is 0 for $t<0$, we sometimes call the impulse response causal as well. This is confusing - causality is a system property, not a signal property. And then to make things worse, we call signals causal if they are zero for $t<0$. What a terrible state of affairs! If you are learning this stuff for the first time then it can be tough. Here's a mental rewrite:
$x(t)$ is causal
"the LTI system with impulse response"

Not
So the unilateral Laplace transform is the save as the bilateral transform of $x(t)$ is causal.

$$
X_{u}(s)=\int_{0}^{\infty} x[t] e^{-s t} d t=\int_{-\infty}^{\infty} x(t] e^{-s t} d t
$$

if $x(t)$ causal
Another way to think about this is to take the bilateral Laplace transform of $x(t) u(t)$. Why do we need the unilateral transform? It makes things simpler - since $x(t)$ is curial
we know that the $R O C$ of $X(s)$ is a right halt-plane. That makes taking inverses for rational $X(s)$ very easy, since each term in the partial fraction expansion maps to the causal version. That means most of the ROC stuff that we had to care about for bilateral trans forms goes away.

A signal $x(t)$ has a unique unilateral Laplace transform $X_{v}(s)$.

We still have to care about the ROC to address issues of stability, since the ROC has to contain the imaginary axis.

We've already computed lots of Laplace transform pairs:

$$
\begin{array}{ll}
\delta(t) & 1 \\
v(t) & \frac{1}{s} \\
e^{-a t} v(t) & \frac{1}{s+a} \\
\cos \left(\omega_{0} t\right) v(t) & \frac{s}{s^{2}+\omega_{0}^{2}} \quad \text { etc... }
\end{array}
$$

Similarly, all of the properties from bilateral Laplace transforms carry over:

$$
\begin{array}{ll}
x(t-T) v(t-T) & e^{-s T} X_{i}(s) \\
e^{a t} x(t) & X(s+a) \\
x(a t) \quad a>0 & \frac{1}{a} X\left(\frac{s}{a}\right) \quad \text { etc... }
\end{array}
$$

And of course, most importantly...

$$
x_{1}(t) * x_{2}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} x_{i, 1}(s) x_{i, 2}(s)
$$

"convolution in the time domain is multiplication in the transform domain"

The unilateral Laplace transform is most useful for studying linear constant coefficient differential equations (LADEs). Lots of LTI systems can be expressed as LCCDEs - in particular, systems which have rational Laplace transforms.

To get a handle on this we need to look a bit wore at the calculus-related Laplace transform properties:

$$
\begin{array}{ll}
\frac{d}{d t} x(t) & s X(s)-x\left(0^{-}\right) \\
\frac{d}{d t^{2}} x(t) & s^{2} x(s)-s x\left(0^{-}\right)-\frac{d}{d t} x\left(0^{-}\right) \\
\int_{0}^{t} x(\tau) d \tau & \frac{1}{s} x(s) \\
t x(t) & -\frac{d}{d s} x(s) \\
\frac{1}{t} x(t) & \int_{s}^{\infty} x(\sigma) d \sigma \\
x\left(0^{+}\right) & \lim _{s \rightarrow \infty} s X(s) \\
\lim _{t \rightarrow \infty} x(t) & \lim _{s \rightarrow 0} s X(s)
\end{array}
$$

Let's do some examples to gat a feel for these.

Ex
Example. Find the Laplace transform of $\sin \left(\omega_{0} t\right) v(t)$.
We have $\frac{d}{d t} \cos \left(\omega_{0} t\right)=-\omega_{0} \sin \left(\omega_{0} t\right)$

$$
\begin{aligned}
\text { thus: }-\frac{d}{d t} \frac{1}{\omega_{0}} \cos \left(\omega_{0} t\right) & \stackrel{\mathcal{L}}{\leftrightarrows}-\frac{s}{\omega_{0}}\left(\frac{s}{s^{2}+\omega_{0}^{2}}-\left(-\frac{1}{\omega_{0}}\right)\right) \\
& =\frac{-s^{2} / \omega_{0}}{s^{2}+\omega_{0}^{2}}+\frac{1}{\omega_{0}} \\
& =\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

But there are other says we can do this:

$$
\int_{0}^{t} \cos \left(\omega_{0} \tau\right) d \tau=\frac{1}{\omega_{0}} \sin \left(\omega_{0} t\right)
$$

So

$$
\begin{aligned}
& \sin \left(\omega_{0} t\right) v(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \omega_{0} \frac{1}{s} \frac{s}{s^{2}+\omega_{0}^{2}} \\
&=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

That was a lot easier! The moral of ste story (or example) is that much like doing integrals, finding the right Laplace transform properties to use is a little bit of an ant - you can get a feel for the "trichs" as you do more examples.

Example: Find the Laplace transform of $\sin ^{2}(2 t-4) u(t)$ What to do? We want to manipulate the expression so we can use Laplace transform properties. We can try to build it up in stages. We need our
good old double angle formula:

$$
\begin{aligned}
\cos (2 A) & =\cos ^{2}(A)-\sin ^{2}(A) \\
& =1-2 \sin ^{2}(A) \\
\sin ^{2}(A) & =\frac{1}{2}(1-\cos (2 A))
\end{aligned}
$$

Now setting $A=2 t-4$:

$$
\sin ^{2}(2 t-4) v(t)=\frac{1}{2}(1-\cos (4 t-8)) v(t)
$$

Taking Laplace transforms of both sides:

$$
\begin{aligned}
\mathscr{L}\left\{\sin ^{2}(2 t-4) v(t)\right\}= & \frac{1}{2} \\
& \mathcal{L}\{v(t)\} \\
& -\frac{1}{2} \mathcal{L}\{\cos (2 t-8) v(t)\}
\end{aligned}
$$

So now we need to find the Laplace Transform of $\cos (4 t-8) u(t)$. The next step is to Eulerize:

$$
\begin{aligned}
\int_{0}^{\infty} & \cos (4 t-8) v(t) e^{-s t} d t \\
= & \int_{0}^{\infty} \frac{1}{2} e^{j(4 t-8)} e^{-s t} d t \\
& +\int_{0}^{\infty} \frac{1}{2} e^{-j(4 t-8)} e^{-s t} d t \\
= & \frac{1}{2} e^{-j 8} \mathcal{L}\left\{e^{j 4 t}\right\}+\frac{1}{2} e^{j 8} \mathcal{L}\left\{e^{-j 4 t}\right\} \\
= & \frac{1}{2} e^{-j 8} \frac{1}{s-4 j}+\frac{1}{2} e^{j 8} \frac{1}{s+4 j} \\
= & \frac{1}{2}\left(\frac{e^{-j 8}(s+4 j)+e^{j 8}(s-4 j)}{s^{2}+16}\right) \\
= & \frac{s \cos (8)-4 \sin (8)}{s^{2}+16}
\end{aligned}
$$

Putting it together:

$$
\mathscr{L}\left\{\sin ^{2}(2 t-4)\right\}=\frac{1}{2}\left(\frac{1}{s}-\frac{s \cos (8)-4 \sin (8)}{s^{2}+16}\right)
$$

Main
Let's look at phase shifts more generally:

$$
\begin{aligned}
\mathcal{L} & \{\cos (\alpha t-\beta)\}=\int_{0}^{\infty} \cos (\alpha t-\beta) e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{1}{2} e^{j(\alpha t-\beta)} e^{-s t} d t+\frac{1}{2} \int_{0}^{\infty} \frac{1}{2} e^{-j(\alpha t-\beta)} e^{-s t} d t \\
& =\frac{1}{2} e^{-j \beta} \frac{1}{s-j \alpha}+\frac{1}{2} e^{j \beta} \frac{1}{s+j \alpha} \\
& =\frac{1}{2}\left(\frac{e^{-j \beta}(s+j \alpha)+e^{j \beta}(s-j \alpha)}{s^{2}+\alpha^{2}}\right) \\
& =\frac{1}{s^{2}+\alpha^{2}}\left(s \cdot \frac{1}{2}\left(e^{j \beta}+e^{-j \beta}\right)+\alpha \frac{1}{2}\left(e^{j(\beta-\pi / 2)}+e^{-j(\beta-\pi / 2)}\right)\right. \\
& =\frac{s \cos (\beta)-\alpha \sin (\beta)}{\delta^{2}+\alpha^{2}}
\end{aligned}
$$

As a sanity cheder:
if $\beta=2 \pi$ then we get $\frac{s}{s^{2}+\alpha^{2}}=\mathcal{L}\{\cos (\alpha z\}]$
If $\beta=\pi / 2$ then we get $\frac{\alpha}{s^{2}+\alpha^{2}}=\mathcal{L}\{\sin (\alpha t)\}$
If $\alpha=2 \pi f_{0}$ and $\beta=\pi$ then we get

$$
\frac{-s}{s^{2}+\left(2 \pi f_{0}\right)^{2}}=\mathcal{L}\{-\cos (\alpha z)\}
$$

Ex
Example: Find the Laplace transform of $t^{2} e^{-2 t} \sin \left(\frac{\pi}{6} t\right) U(t)$
Start with $\mathcal{L}\{\sin (\pi / 6 t) v(t)\}=\frac{\pi / 6}{s^{2}+(\pi / 6)^{2}}$
Now take two derivatives:-

$$
\mathcal{L}\left\{t^{2} \sin (\pi / 6 t) v(t)\right\}=\frac{d}{d s} \frac{\pi / 6 \cdot 2 s}{\left(s^{2}+(\pi / 6)^{2}\right)^{2}}
$$

$$
\begin{aligned}
& =\frac{(\pi / 3)\left(s^{2}+(\pi / 6)^{2}\right)^{2}-(\pi / 3) s 2\left(s^{2}+(\pi / 6)^{2}\right) 2 s}{\left(s^{2}+(\pi / 6)^{2}\right) 43} \\
& =\frac{-\pi s^{2}+(\pi / 3)(\pi / 6)^{2}}{\left(s^{2}+(\pi / 6)^{2}\right)^{3}} \\
& \text { Finally, } e^{-2 t \text { sends } s \rightarrow s+2} \\
& \mathcal{L}\left\{t^{2} e^{-2 t} \sin (\pi / 6 t) u(t)\right\} \\
& =\frac{-\pi(s+2)^{2}+(\pi / 6)^{2} \pi / 3}{\left((s+2)^{2}+(\pi / 6)^{2}\right)^{3}}
\end{aligned}
$$

On the one hand, you wight think this rs horribly ugly. On the other hand, this is way easier than doing the integral

$$
\int_{-\infty}^{\infty} t^{2} e^{-2 t} \sin (\pi / 6 t) v(t) d t
$$

There are otter ways fo do this: we could have Euterized $\sin (\pi / 6 t)$ and then $\mathcal{L}\}$ tr e two complex exponential and then taken 2 derivatives.

Example: For the previous example, find $x\left(0^{-}\right)$and $x(\infty)$.
Here $x(\infty)=\lim _{t \rightarrow \infty} x(t)$.
We wise the initial and final value theorems:. $x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)=0 \quad$ since the denominator
has 5^{6} $X(\infty)=\lim _{s \rightarrow 0} S X(s)=0$ since the s doesu't cancel

These are very handy for studying transient and long term (steady-state) responses of systems.

Man
So what about differential equations? When we have a system as an LCCDE we can often interpret the input-output relationship in terms of derivatives:

$$
\begin{aligned}
& q_{N}\left(\frac{d}{d t}\right)^{N} y(t)+q_{N-1}\left(\frac{d}{d t}\right)^{N-1}+\cdots+q_{1} \frac{d}{d t} y(t)+q_{0} \\
& \quad=p_{M}\left(\frac{d}{d t}\right)^{M} x(t)+p_{M-1}\left(\frac{d}{d t}\right)^{M-1} x(t)+\cdots+p_{1} \frac{d}{d t} x(t)+p_{0}
\end{aligned}
$$

Taking Laplace transforms on both sides and assuming zero initial conditions, each derivative turns into ans:

$$
\begin{aligned}
&\left(q_{N} s^{N}+q_{N-1} s^{N-1}+\cdots+q_{1} s+q_{0}\right) y(s) \\
&=\left(p_{M} s^{M}+p_{M-1} s^{M-1}+\cdots+p_{1} s+p_{0}\right) x(s)
\end{aligned}
$$

Now this input - output relationship is defining a system. This system is linear and time invariant.

Ting Try showing the system defined by the LCCDE above is linear and time invariant using the definitions of linearity and time invariance.

Main \square
LTI systems are characterized by their impulse response. Let's call the impulse response $h(t)$. How can we find it from the LCCDE? Remember, the out put $y(t)$ is the convolution

$$
y(t)=h(t) * x(t)
$$

Convolution in tine is multiplication in s :

$$
Y(s)=H(s) X(s)
$$

So we can worth $H(s)$ as $H(s)=\frac{Y(s)}{X(s)}$. This
is sonefines called the transfer function of the LTI system, since $H(s)$ changes $X(s)$ to $Y(s)$ (by multiplication).

For our LCCDE, $H(3)$ is rational:

$$
\begin{aligned}
H(s) & =\frac{p_{M} s^{M}+p_{M-1} s^{M-1}+\cdots+p_{1} s+p_{0}}{q_{N} s^{N}+q_{N-1} s^{N-1}+\cdots+q_{1} s+q_{0}} \\
& =C \frac{\left(s-a_{M}\right)\left(s-a_{M-1}\right) \cdots\left(s-a_{1}\right)}{\left(s-b_{N}\right)\left(s-b_{N-1}\right) \cdots\left(s-b_{1}\right)}
\end{aligned}
$$

So as promised, LCCDES correspond to rational $H(s)$.
The transfer function vie of systems makes formally inverting rational $H(s)$ as: y

$$
\frac{1}{H(s)}=\frac{1}{c} \cdot \frac{\left(s-b_{N}\right)\left(s-b_{N-1}\right) \cdots\left(s-b_{1}\right)}{\left(s-a_{M}\right)\left(s-a_{M-1}\right) \cdots\left(s-a_{1}\right)}
$$

If $N>M$ then $1 / H(s)=\frac{D(s)}{N(s)}$ has a higher degree in the numerator than the denominator - it is an improper rational function. That means as $S \rightarrow \infty$ there is a pole at ∞ so the inverse cannot be stable. If $N \leq M$ then the poles /zeros of $H(s)$ become the zeros/ poles of $1 / H C s)$ so to mate $1 / H(s)$ stable we need all of the zeros of $H(3)$ to be in the left half plane.

Putting this together, a stable and causal syr stem with rational transfer fraction $H(s)$ has a stable and causal inverse if and only if the $\#$ of poles 2 zeros is the same and all poles 2 zeros are in the LHP.

Ex
Example: Suppose $H(s)=\frac{4 s+17}{s^{2}+7 s+10}$.
Factorize:

$$
\begin{aligned}
H(s)=\frac{4 s+17}{(s+5)(s+2)} \Rightarrow & \begin{array}{l}
\text { poles } e-2,-5 \\
\\
\text { zero e } e-17 / 4
\end{array}
\end{aligned}
$$

2 poles, 1 zero \Rightarrow inverse is not causal \& stable.
Example: Suppose

$$
H(s)=\frac{s^{2}+3 s+2}{s^{2}+s+3}
$$

\# poles 2 zeros is the save $1 s$

$$
\frac{1}{H(s)}=\frac{s^{2}+s+3}{s^{2}+3 s+2}=\frac{\left(s-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{11}\right)\right)\left(s-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{11}\right)\right)}{(s+2)(s+1)}
$$

Partial fraction expansion:

$$
\begin{gathered}
\left.\frac{s^{2}+s+3}{(s+2)}\right|_{s=-1}=\frac{3}{1}=3 \\
\left.\frac{s^{2}+s+3}{(s+1)}\right|_{s=-2}=\frac{4-2+3}{-1}=-5 \\
\frac{1}{H(s)}=\frac{3}{s+1}-\frac{5}{s+2} \\
h(t)=3 e^{-t} v(t)-5 e^{-2 t} v(t)
\end{gathered}
$$

take causal inverse
(unilateral Laplace transtom)
Example:
phil
The preceding fact is one of the bey result i in LTI system theory: since

LCCDES \longrightarrow rational $H(s)$
this characterization of culen stable/cavsal inverses exist covers all syblems governed by simple differential equations.

The most common systems we have seen in earlier classes that correspond to LCCDEs cone from RLC circuits and mass/spring systems - that is, from physics. When we study differential equations we learn to care about the initial conditions, the transient behavior, and the steady-state response. Our LTI system theory tells us that the response to an input $X(s)$ is $Y(s)=H(s) X(s)$. How do afr d.ff.eq. ideas map onto the LTI system/convolution story?

We cen think of initial conditions as of they were introducing an extra input term that is sone multiple of $\delta(t)$, the impulse at 0 . So the idea is to use linearity:

System worth
initial state $A \longrightarrow$ System esth and input $x(t)$ state and input $x(t)+A \delta(t)$

So we can thous of $Y(3)$ as having two components:

$$
Y(s)=A H(s) 1+H(s) X(s)
$$

response from response due to initial state a the input only "zero-input response" "zero state response"

The standard transient t steady -state response is a different way of partitioning the output:

$$
y(t)=\underbrace{y_{+r}(t)}_{\substack{\rightarrow \text { as } \\ t \rightarrow \infty}}+\underbrace{y_{s s}(t)}_{\substack{t \rightarrow \text { as } \\ t \rightarrow \infty}}
$$

Here we have to take the inverse Laplace transform and loon at the terms to see which ones go to $y_{t r}(t)$ and which go to $y_{>1}(t)$.
E_{x}
Example. An LTI system is given by the following LCCDE:

$$
\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+6 y(t)=\frac{d}{d t} x(t)+4 x(t)
$$

Suppose the initial conditions are $y\left(0^{-}\right)=2, \frac{d}{d t} y\left(0^{-}\right)=0$. What all can we say about this system with in pot $e^{-t} v(t) ?$

First find the transfer function.

$$
\begin{aligned}
& s^{2} Y(s)+5 s Y(s)+6=s X(s)+4 X(s) \\
& H(s)=\frac{Y(s)}{X(s)}=\frac{s+4}{s^{2}+5 s+6}=\frac{s+4}{(s+3)(s+2)}
\end{aligned}
$$

So two poles at $-2,-3$ and a zero at -4 .

The zero-state response rs the inverse Laplace transform of

$$
H(s) X(s)=\frac{(s+4)}{(s+2)(s+3)} \cdot \frac{1}{(s+1)} \text { from } e^{-t} u(t)
$$

Doing a partial fraction expansion:

$$
\begin{aligned}
& \left.\frac{s+4}{(s+2)(s+3)}\right|_{s=-1}=\frac{3}{1 \cdot 2}=\frac{3}{2} \\
& \left.\frac{s+4}{(s+1)(s+3)}\right|_{s=-2}=\frac{2}{-1 \cdot 1}=-2 \\
& \left.\frac{s+4}{(s+1)(s+2)}\right|_{s=-3}=\frac{1}{-2 \cdot-1}=\frac{1}{2}
\end{aligned}
$$

so

$$
\begin{aligned}
& y_{z s}(s)=\frac{3 / 2}{s+1}-\frac{2}{s+2}+\frac{1 / 2}{s+3} \\
& y_{z s}(t)=\frac{3}{2} e^{-t} u(t)-2 e^{-2 t} u(t)+\frac{1}{2} e^{-3 t} u(t)
\end{aligned}
$$

The zero-input response is the response to the initial conditions e $t=0$. For this we need the Laplace transform with the initial conditions added in:

$$
\begin{aligned}
y(t) & \longrightarrow y(s) \\
\frac{d}{d t} y(t) & \longrightarrow s y(s)-y\left(0^{-}\right) \\
\frac{d^{2}}{d t^{2}} y(t) & \longrightarrow s^{2} y(s)-s y\left(0^{-}\right)-\frac{d}{d t} y\left(0^{-}\right)
\end{aligned}
$$

So the LCCDE becomes

$$
\begin{aligned}
&\left(s^{2} y(s)-s y\left(0^{-}\right)-\frac{d}{d t} y\left(0^{-}\right)\right)+5\left(s y(3)-y\left(0^{-}\right)\right) \\
&+6 y(s) \\
&=s X(s)-x\left(0^{-}\right)+4 X(3)
\end{aligned}
$$

To get the zero-input response we set $x\left(0^{-}\right)$to 0 and find the transfer function between the initial state and Y :

$$
\begin{aligned}
\left(s^{2}+5 s+6\right) y(s) & =(s+5) s y\left(0^{-}\right)+\frac{d}{d t} y\left(0^{-}\right) \\
& =2(s+5)
\end{aligned}
$$

So

$$
Y_{z I}(s)=\frac{2(s+5)}{(s+2)(s+3)}
$$

Doing a partial fraction expansion:

$$
\begin{aligned}
& \left.\frac{2(s+5)}{s+3}\right|_{s=-2}=\frac{6}{1}=6 \\
& \left.\frac{2(s+5)}{s+2}\right|_{s=-3}=\frac{4}{-1}=-4
\end{aligned}
$$

So

$$
\begin{aligned}
& y_{z I}(s)=\frac{6}{s+2}-\frac{4}{s+3} \\
& y_{Z I}(t)=6 e^{-2 t} v(t)-4 e^{-3 t} v(t)
\end{aligned}
$$

And

$$
\begin{aligned}
& y(t)=6 e^{-2 t} v(t)-4 e^{-3 t} v(t) \\
&+\frac{3}{2} e^{-t} v(t)-2 e^{-2 t} v(t)+\frac{1}{2} e^{-3 t} u(t)
\end{aligned}
$$

All of these terms $\longrightarrow 0$ so $y_{z r}(t)=y(t)$ and $y_{s s}(t)=0$.

