Notes 4: Continuous - Tine LTI Systems

Objectives:

- Understand how the impulse response for CT LTI systems generates the out put signal from the input signal
- Calculate system outputs using the convolution integral.
- Derive the 5 stages of the output signal for time-limited signals.
- use convolution properties to simplify Calculations

Main
Conceptually, $C T$ systems donif differ that much from their DT counterparts.
The mather metics is a bit different - sums become integrals, and so on.

The big mathematical difference is that we will have to really dig in on the properties of CT delta-functions. Remember That when integrated, $\delta(t)$ behaves as if there was an area of 1 exactly at $t=0$:

Mathematically y :

So for any to...

$$
\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
$$

Why? $\delta\left(t-t_{8}\right)$ is $=0$ except at $t=t_{0}$
So $x(t) \delta\left(t-t_{0}\right)=\Delta$ except at $t=t_{0}$:

$$
x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

Then plug in and use the δ-function property

This is the same "sifting property" from DT:

$$
\sum_{h=-\infty}^{\infty} x[h] \delta[n-h]=x[n]
$$

So we can write $x(t)$ as an integral of scaled and shifted impulse functions:

$$
x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau \quad \tau=t \ldots
$$

As we did in the DT setting, left's define $h(t)$ to be the system response to $\delta(t)$.

Def
Def. The impulse response of a CT LTI system is the oufret of the system with input $x(t)=\delta(t)$.

Main
If
$\delta(t) \longrightarrow h(t) \quad$ impulse response
then

$$
\alpha \delta(t) \longrightarrow \alpha h(t)
$$

what about delay? Use time invariance:

$$
\alpha \delta(t-\tau) \longrightarrow \alpha h(t-\tau)
$$

Set $\alpha=x(\tau)$ for example...

$$
x(\tau) \delta(t-\tau) \longrightarrow x(\tau) h(t-\tau)
$$

Note we are just using simple properties here...

Now, we saw that any function $x(F)$ can be written as an integral over δ-functions:

$$
x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau
$$

So now we can "cheat" a bit (this is actually fine, mathematically, but differs from the linearity we saw earlier:

$$
\begin{gathered}
\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau \\
\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
\end{gathered}
$$

This means that the output $y(t)$ of a system with impulse response $h(t)$ to an in put $x(t)$ is

$$
\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

De d
Theorem (convolution theorem for CTLTI Systems) The output of a CT LTT system with impulse response $h(t)$ to an input signal $h(t)$ is

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau .
$$

The integral

$$
\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

is called the convolution of $x(t)$ and $h(t)$ and 13 denoted by $(x * h)(t)$. The $C T$ convolution is also symmetric:

$$
\begin{aligned}
(x * h)(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =(h * x)(t)
\end{aligned}
$$

Thy
Try to prove that $C T$ convolution is symenctric. You can mimic the save argument from DT.

Phil
The book goes info a more formal/rigorous approach to the sifting property of δ-functions and analyzing an approximation of the CT convolution in terms of DT. This is definitely worth reading if f when your get confused about δ-functions and how they work. But for the first time arovend it's easier to just "integrate on both sides" and
treat the integral like it is a some. That is basically what the approximation argument shows.

Main
So for $D T$ and $C T$ LTI systems, the output signal is the convolution of the input signal with the impulse response. Looking at the integral:

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

we can see the same interpretation: $y(t)$ is the integral (sum) of scaled and shifted impulse responses.

We can give a similar vorseal interpretation to the $h * x$ version...

$x(t)$ goes into the filter starting from time $t=0$, corresponding to a flip and then a shift forward as the signal goes sn.

Ex
Example

$$
\begin{aligned}
& h(t)=v(t) \\
& x(t)=e^{-a t} v(t) \quad a>0
\end{aligned}
$$

Now we can compute with $h(\tau) x(t-\tau)$ or $x(\tau) h(t-\tau)$
which is better? It depends on what hind of sutegral is less confusing. Let's do both!

But first: $x(t)=0$ for $t \leqslant 0$ and $h(t)=0$ for $t \leqslant 0$.
This means:

$$
y(t)=0 \text { for } t \leqslant 0 \text {. (why?) }
$$

So we just need to find $g(t)$ for $t>0$:

$$
\begin{aligned}
& g(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} e^{-a(t-\tau)} v(\tau) v(t-\tau) d \tau \\
& \text { logging in the } \\
& \text { signals } \\
& =\int_{0}^{t} e^{-a(t-\tau)} d \tau \\
& v(\tau)=0 \text { for } \tau \leqslant 0 \\
& \text { and } \\
& v(t-\tau)=0 \text { for } \tau \geqslant t \\
& =\left[\frac{1}{a} e^{a \tau} e^{-a t}\right]_{\tau=0}^{t} \\
& =\frac{1}{a}-\frac{1}{a} e^{-a t} \\
& =\frac{1}{a}\left(1-e^{-a t}\right)
\end{aligned}
$$

Putting it together:

$$
\begin{aligned}
y(t) & =\left\{\begin{array}{cc}
0 & t \leq 0 \\
\frac{1}{a}\left(1-e^{-a t}\right) & t 20
\end{array}\right. \\
& =\frac{1}{a}\left(1-e^{-a t}\right) v(t)
\end{aligned}
$$

what about the other way?

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} e^{-a \tau} v(\tau) v(t-\tau) d \tau \\
& \left.=\int_{0}^{t} e^{-a \tau} d \tau \quad \begin{array}{l}
\text { save argument } \\
\\
\end{array}\right) \quad \text { as above } \\
& \left.=\frac{1}{a} e^{-a \tau}\right]_{\tau=0}^{t} \quad\left(1-e^{-a t}\right)
\end{aligned}
$$

often one integral is a little easierfless confusing than the other. You have to build up your intuition to see which one will be better.

See Example 2.6 for sone pictures.

Example: two boxcars:

$$
\begin{aligned}
& x(t)= \begin{cases}1 & |t| \leq T \\
0 & |t|>T\end{cases} \\
& h(t)= \begin{cases}1 & |t| \leq 2 T \\
0 & |t|>2 T\end{cases}
\end{aligned}
$$

Let's try $h * x$ (you can try $x * h$ on your own).

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau)
$$

First: wok $x(\tau)=x(-\tau)$.
So $x(t-\tau)$ is $x(-(\tau-t))$:

1) for $t \leqslant-3 T \quad x(t-\tau)$ does not overlap $h(\tau)$ so $y(t)=0$.
2) for $-3 T<t \leqslant-T$ there is a partial overlap:

$$
T+t \quad y(t)=\int_{-2 T}^{T+t} 1 d \tau=3 T+t
$$

3) for $-T<t \leq T$ There 3 total overlap:

$$
y(t)=\int_{-T+t}^{T+t} 1 d \tau=2 T
$$

4) for $T<t \leq 3 T$ we get a simile over lap:

$$
y(t)=\int_{-T+t}^{2 T} 1 d t=3 T-t
$$

5) for $t>3 T$ there is again no overlap so $y(t)=0$.

Algebraically:

$$
y(t)= \begin{cases}0 & t \leq-3 T \\ 3 T+t & -3 T<t \leq-T \\ 2 T & -T<t<T \\ 3 T-t & T \leq t<3 T \\ 0 & t \geqslant 3 T\end{cases}
$$

Graphically:

Why does this mate reuse? The system h acts like a "windowed integrator" - it chops off a 4 J length chink of the supt signal and the convolution integrates that part.

Suppose 1) $x(t)=0$ for $t<J_{\text {min }}$ and

$$
t>T_{\max }
$$

2) $h(t)=0$ for $t<R_{\min }$ and

$$
t \geq R_{\max }
$$

Then we can go through the same exercise that we did for $D T$ signals:

1) $h(t-\tau)$

So for $t-R_{\min } \leqslant T \min \quad y(t)=0$
or $\quad t<R_{\text {min }}+T_{\text {min }} \Rightarrow y(t)=0$
2)

$$
\text { For } \quad t-R_{\max }<J_{\min } \leqslant t-R_{\min }
$$

we have

$$
y(t)=\int_{T_{\text {min }}}^{t-R_{\min }} x(\tau) h(t-\tau) d \tau
$$

3)

For $\quad t-R_{\max }>T_{\min }$

$$
t-R_{\min }<J_{\max }
$$

or $\quad R_{\text {max }}+T_{\text {min }}<t<R_{\text {min }}+T_{\text {max }}$
we have

$$
y(t)=\int_{t-R_{\max }}^{t-R_{\min }} x(\tau) h(t-\tau)
$$

4)

For $\quad t-R_{\max } \leqslant T_{\max }<t-R_{\operatorname{man}}$
or $\quad R_{\max }+T_{\max } \leqslant t<R_{\max }+T_{\text {max }}$

$$
y(t)=\int_{t-R_{\max }}^{T \max } x(\tau) h(t-\tau)
$$

5)

Ex $\begin{aligned} \text { Example: } \begin{aligned} \quad x(t) & =\left\{\begin{array}{l}\cos \left(2 \pi f_{0} t\right) \\ 0\end{array} \quad 0 \leqslant t \leqslant \frac{k}{f_{0}}\right. \\ h(t) & =v(t)-v\left(t-M / f_{0}\right)\end{aligned}\end{aligned}$

Assume $M<K$
Remember: always draw a picture!!!

If this graph is at
all confusing, stop and make sure you

Now that we have a picture of the two functions we can do the integral:

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} \cos \left(2 \pi f_{0} \tau\right)\left(v(t-\tau)-v\left(t-\tau-M / f_{0}\right)\right) d \tau \\
& T_{\min }=0 \quad T_{\max }=k / f_{0} \\
& R_{\min }=0 \quad R_{\max }=M / f_{0}
\end{aligned}
$$

We can use the general formula:
1)+5) $y(t)=0$ for $t \leq 0$ and $t \geqslant \frac{k+M}{f_{0}}$
2)

$$
\begin{aligned}
y(t) & =\int_{T_{\min }}^{t-R_{\min }} x(\tau) h(t-\tau) d \tau \\
& =\int_{0}^{t} \cos \left(2 \pi f_{0} \tau\right) d \tau \\
& =\left[\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} \tau\right)\right]_{\tau=0}^{t} \\
& =\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} t\right)
\end{aligned}
$$

3) for $R_{\text {max }}+T_{\text {mix }}<t<R_{\text {mix }}+T_{\text {max }}$

$$
\begin{aligned}
y(t) & =\int_{t-R_{\max }}^{t-R_{\operatorname{man}}} x(\tau) h(t-\tau) d \tau \\
& =\int_{t-M / f_{0}}^{t} \cos \left(2 \pi f_{0} \tau\right) d \tau
\end{aligned}
$$

$$
\begin{aligned}
&=\left[\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} c\right)\right]_{t-M / f_{0}}^{t} \\
&=\frac{1}{2 \pi f_{0}}\left(\sin \left(2 \pi f_{0} t\right)-\sin \left(2 \pi f_{0}\left(t-\mu / f_{0}\right)\right)\right. \\
& \underset{\substack{\text { integer } \\
\text { multiple } \\
\text { of } \\
2 \pi}}{ }=\frac{1}{2 \pi f_{0}}\left(\sin \left(2 \pi f_{0} t\right)-\sin \left(2 \pi f_{0} t-2 \pi M\right)\right) \\
&=\frac{1}{2 \pi f_{0}}\left(\sin \left(2 \pi f_{0} t\right)-\sin \left(2 \pi f_{0} t\right)\right) \\
&=0
\end{aligned}
$$

4) for $R_{\text {min }}+T_{\text {max }} \leq t<R_{\text {max }}+T_{\text {max }}$

$$
\begin{aligned}
& y(t)=\int_{t-R_{\max }}^{T \max } x(\tau) h(t-\tau) d \tau \\
& =\int_{t-M / f_{0}}^{k / f_{0}} \cos \left(2 \pi f_{0} \tau\right) d \tau \\
& =\left[\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} \tau\right)\right]_{t-M / f_{0}}^{k / f_{0}} \\
& =\frac{1}{2 \pi f_{0}}\left(\sin \left(2 \pi f_{0} \frac{k}{f_{0}}\right)-\sin \left(2 \pi f_{0}\left(t-M / f_{0}\right)\right)\right) \\
& \frac{1}{2 \pi f_{0}}\left(\sin (2 \pi k)-\sin \left(2 \pi f_{0} t-2 \pi M\right)\right) \\
& =-\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} t\right)
\end{aligned}
$$

Putting it all together:

$$
y(t)=\left\{\begin{array}{cl}
0 & t \leq 0 \\
\frac{1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} t\right) & 0<t \leq \frac{M}{f_{0}} \\
0 & \frac{M}{f_{0}}<t<\frac{k}{f_{0}} \\
\frac{-1}{2 \pi f_{0}} \sin \left(2 \pi f_{0} t\right) & \frac{k}{f_{0}} \leq t<\frac{k+M}{f_{0}} \\
0 & t \geqslant \frac{K+M}{f_{0}}
\end{array}\right.
$$

Try [As before, try getty the general form for the 5 regions to consider for the case where $h(t)$ is longer than $x(t)$.

Phil
We douct use the terms FIR / IIR for CT systems but instead "fime-limited" is used for the case where $h(t) \neq 0$ for $R_{\min } \angle t \angle R_{\max }$ only. Later on we will see that being time limited has implications for the frequency content of a signal or system. This turns out to be related to an uncertainty principle (like the famous Hersenberg Uncertainty Principle from physics).

Main
As with DT convolution, $C T$ convolution is commutative, associative, anal distributes over addition:

Commutative

$$
\xrightarrow{x(t)} h^{h(t)} \xrightarrow{y(t)} \xrightarrow{h(t)} \underset{ }{x(t)} \xrightarrow{y(t)} \begin{array}{r}
(x * h)(t) \\
\\
\\
\end{array}(h * x)(t)
$$

Associative

$$
\begin{aligned}
& \left.\xrightarrow{x(t)} \xrightarrow{\left(x * h_{1}\right)} \xrightarrow\left[{h_{1}(t) \xrightarrow{y(t)}\left(\left(x * h_{1}\right) * h_{2}\right)(t}\right)\right]{\substack{ \\
\rightarrow}} \\
& x(t) \underset{\left(h_{1} * h_{2}\right)(t) \longrightarrow y(t)}{\longrightarrow} \\
& =\left(x *\left(h_{1} * h_{2}\right)\right)(t)
\end{aligned}
$$

Distmibutrue

These properties, plus time invariance, can simplify the analyses of CT systems gust 1,2 e they can for DJ systems.
$E x$
Example (modified from Example 2.8)
Let $\quad x(t)=e^{-2 t} v(-4-t)$

$$
h(t)=v(t-3)
$$

what is $y(t)=(x * h)(t)$?

First draw a picture with x and h as
 functions of τ - this as because in the convolution integral the

We can use fine invariance to shift rose bach to 0 :

$$
\begin{aligned}
& y(t)=x(t) * h(t) \\
& y(t+3)=x(t) * h(t+3) \quad \\
& \text { (time invariance) } \\
&=h(t+3) * x(t) \quad \text { (commutativity) }
\end{aligned}
$$

$$
y(t-1)=h(t+3) * x(t-4) \text { (time invariance) }
$$

$$
=v(t) * e^{2 t} v(-t)
$$

Define $z(t)=e^{-8} e^{2 t} v(-t)$
$g(t)=v(t)$

So now do this convolution: $\quad z * g$

$$
\begin{aligned}
(z * g)(t) & =\int_{-\infty}^{\infty} e^{-8} e^{2 \tau} v(-\tau) v(t-\tau) d \tau \\
& =\left\{\begin{array}{l}
\int_{-\infty}^{t} e^{-8} e^{2 \tau} d \tau=\frac{1}{2} e^{-\delta} e^{2 t} \quad \text { for } t<0 \\
\int_{-\infty}^{0} e^{-8} e^{2 \tau} d \tau=\frac{1}{2} e^{-8} \quad \text { for } \quad t \geqslant 0
\end{array}\right.
\end{aligned}
$$

Now shaft back: this is $y(t-1)$ so we advance by

$$
y(t)= \begin{cases}\frac{1}{2} e^{-8} e^{2(t+1)} & t<-1 \\ \frac{1}{2} e^{-8} & t \geqslant-1\end{cases}
$$

Main
The previous problem Illustrates how to use commutativity and tine invariance to shift the impulse response/signal to an easier- to -manipulate form.

- Commutative: $(x * h)(t)=(h * x)(t)$

Proof.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{\infty}^{-\infty}-x(t-s) h(s) d s \\
& =\int_{-\infty}^{\infty} h(s) x(t-s) d s
\end{aligned}
$$

Change of variables:

$$
\begin{aligned}
& s=t-\tau \\
& \tau=t-s \\
& d \tau=-d s \\
& \tau \text { goes from }-\infty \\
& s \text { goes from } \infty \\
& \quad t_{0}-\infty
\end{aligned}
$$

- Associative: $\left(\left(x * h_{1}\right) * h_{2}\right)(t)=\left(x *\left(h_{1} * h_{2}\right)\right)(t)$

$$
\begin{aligned}
& \left(x * h_{1}\right)(s)=\int_{-\infty}^{\infty} x(\tau) h_{1}(s-\tau) d \tau \\
& \left(\left(x * h_{1}\right) * h_{2}\right)(t) \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x(\tau) h_{1}(s-\tau) d \tau\right) h_{2}(t-s) d s \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) h_{1}(s-\tau) h_{2}(t-s) d \tau d s \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) h_{1}(s-\tau) h_{2}(t-s) d s d \tau \\
& =\int_{-\infty}^{\infty} x(\tau)\left(\int_{-\infty}^{\infty} h_{1}(s-\tau) h_{2}(t-s) d s\right) d \tau \\
& =\int_{-\infty}^{\infty} x(\tau)\left(h_{1} * h_{2}\right)(t-\tau) d \tau \\
& =\left(x *\left(h_{1} * h_{2}\right)\right)(t)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& \left(x *\left(h_{1}+h_{2}\right)\right)(t)=\left(x+h_{1}\right)(t)+\left(x+h_{2}\right)(t) \\
& \int_{-\infty}^{\infty} x(\tau)\left(h_{1}(t-\tau)+h_{2}(t-\tau)\right) d \tau
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} x(\tau) h_{1}(t-\tau) d \tau+\int_{-\infty}^{\infty} x(t) h_{2}(t-\tau)
$$

We can use these properties to simplify calculations by reducing problems to simpler subproblems.

Interpreting the impulse response
Much like the DT impulse response, we can interpret the impulse response in terms of what it does.
For example, $\delta\left(t-t_{0}\right)$ makes a copy of $x(t)$ starting at time t_{0} :

$$
x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)
$$

This is also a delay by to Extending this:

$$
\begin{aligned}
x(t) & *\left(\delta\left(t-t_{0}\right)+2 \delta\left(t-t_{1}\right)\right) \\
= & x\left(t-t_{0}\right)+2 x\left(t-t_{1}\right) \\
= & \text { copy of } x \text { delayed by to } \\
& 2 \cdot \text { copy of } x \text { delayed by } t_{1}
\end{aligned}
$$

Extending even more:

$$
\begin{aligned}
& h(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-t_{k}\right) \\
& (x * h)(t)=\sum_{k=-\infty}^{\infty} x\left(t-t_{k}\right)
\end{aligned}
$$

Doing some examples can help:

Ex
Example (Oppenheim \& Willshy 2.12)

$$
y(t)=\left(e^{-t} v(t)\right) * \sum_{k=-\infty}^{\infty} \delta(t-3 k)
$$

This system makes copies of $x(t)$ starting at integer multiples of 3
(1) Draw a picture

So the output is the sum of copies of $e^{-t} v(t)$ starting at integer multiples of 3 .

The output at time t depends on past copies
(2) Use LTI system properties to simplify. Maybe try distributive property:

$$
\begin{aligned}
y(t) & =\sum_{h=-\infty}^{\infty}\left(e^{-t} v(t)\right) * \delta(t-3 h) \\
& =\sum_{h=-\infty}^{\infty} e^{-(t-3 h)} v(t-3 h)
\end{aligned}
$$

(3) Do the calculation:

$$
\begin{aligned}
& y(t)=\sum_{h=-\infty}^{\infty} e^{-(t-3 h)} v(t-3 h) \quad \text { or } \quad \begin{array}{l}
\text { oof } \\
t<3 k
\end{array} \\
& =\sum_{h=-\infty}^{\lfloor 3 / t\rfloor} e^{-(t-3 h)} \\
& h>3 / t \\
& \text { so... }
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =\sum_{h=-\infty}^{\lfloor 3 / t\rfloor} e^{-(t-3 h)} \\
& =e^{-t} \sum_{h=-\infty}^{\left.L^{3} / t\right\rfloor} e^{3 h} \\
& =e^{-t} \sum_{h=L^{3 / t}}^{\infty} e^{-3 h} \\
& =e^{-t} \frac{e^{\left.L^{3} / t\right\rfloor}}{1}-e^{-3}
\end{aligned}
$$

The problem in the book ashe to shoer $y(t)$ is of the form $A e^{-t}$ for $0 \leq t<3$. In that range of t, $e^{\lfloor 3 / t\rfloor}=e^{0}=1$, so

$$
\begin{aligned}
y(t) & =\frac{1}{1-e^{-3}} e^{-t} \\
& =A
\end{aligned}
$$

Example: Suppose

$$
\begin{aligned}
& x(t)= \begin{cases}t+1 & 0 \leq t \leq 1 \\
2-t & 1<t \leq 2 \\
0 & \text { elsewhere }\end{cases} \\
& +2 \delta(t+1)
\end{aligned}
$$

To find $y(t)=x(t) * h(t) \ldots$
(1) Draw a picture:

(2) Use convolution properties:

$$
\begin{aligned}
& (x * h)(t)=x(t) * \delta(t+2) \\
& \quad+2 x(t) * \delta(t+1) \\
& x(t) * \delta(t+2)=x(t+2)=\left\{\begin{array}{cc}
t+3 & -2 \leq t \leq-1 \\
\sim t & -1<t \leq 0 \\
0 & \text { oterubse }
\end{array}\right. \\
& x(t) * 2 \delta(t+1)=2 x(t+1)= \begin{cases}2 t+4 & -1 \leq t \leq 0 \\
2-2 t & 0<t \leq 1 \\
0 & \text { othenwse }\end{cases} \\
& y(t)= \begin{cases}t+3 & -1<t \leq 0 \\
-t+2 t+4 & 0<t \leq 1 \\
2-2 t & 0 \text { terewisc } \\
0\end{cases}
\end{aligned}
$$

A more substantive example:
In communication system, bits of information (O 's and 1's) are encoded into CT waveforms for transmission. A simplified model looks like thus:

Typically we think of a bot as being encoded into a "pulse" of duration T. For example:

1. (antipodal signaling) $b=0 \Rightarrow x(t)=-A \cos \left(2 \pi f_{0} t\right)$

$$
b=1 \Rightarrow x(t)=A \cos \left(2 \pi f_{0} t\right)
$$

2. (orthogonal signaling)

$$
\begin{aligned}
& b=0 \Rightarrow x(t)=A \sin \left(2 \pi f_{0} t\right) \\
& b=1 \Rightarrow x(t)=A \cos \left(2 \pi f_{0} t\right)
\end{aligned}
$$

The receiver gets a noisy version of the signal $x(t)$:

$$
y(t)=x(t)+n(t)
$$

and has to determine if $b=0$ or $b=1$ was sent based on $y(t)$.

The way this is done is through what is called a matched filter.

This is a filter "matched" to one of the pulses. The output $y(t)$ is filtered and then the receiver looks at the output at time T. For nor let's focus on the case where there is no noise.

Then the matched filter is $h(t)=x(T-t)$:
why do we call this matched?

If we look
at $(x * h)(T)$,

the flipped and slid version of $x(t)$ lines up perfectly with $h(t)$:

So what about our examples?
Suppose $T=K / f_{0}$ for some integer K.
Then each sinusoid has an integer \# of cycles since their periods are $1 / f_{0}$

In algebra:

$$
\begin{aligned}
& \cos (\left.2 \pi f_{0}(T-t)\right) \\
&=\cos \left(2 \pi f_{0} T-2 \pi f_{0} t\right) \\
&=\cos (2 \pi k \\
&=\cos \left(-2 \pi f_{0} t\right) \\
&=\cos \left(2 \pi f_{0} t\right) \\
& \text { o os is even }
\end{aligned}
$$

In algebra: $\quad \sin \left(2 \pi f_{0}(T-t)\right)$

$$
\begin{aligned}
& =\sin \left(2 \pi f_{0} T-2 \pi f_{0} t\right) \\
& =\sin \left(2 \pi k-2 \pi f_{0} t\right) \\
& =\sin \left(-2 \pi f_{0} t\right) \quad \text { sin is odd } \\
& =-\sin \left(2 \pi f_{0} t\right) \quad
\end{aligned}
$$

Lefts focus on antipodal signaling. The receiver is doing this:

Remember,

$$
y(t)=x(t)+w(t)
$$

So there are two components at the output of h :

$$
z(t)=\underbrace{(x * h)(t)}_{\text {signal }}+\underbrace{(n * h)(t)}_{\text {norse }}
$$

We are sampling the orfpert at fine $t=T$:

$$
\begin{aligned}
z(T)= & \int_{-\infty}^{\infty} h(\tau) y(T-\tau) d \tau \\
= & \int_{-\infty}^{\infty} h(\tau) x(T-\tau) d \tau \\
& +\int_{-\infty}^{\infty} h(\tau) n(T-\tau) d \tau \\
= & \int_{0}^{T} h(\tau) x(\tau-\tau) d \tau \\
& +\int_{0}^{T} h(\tau) h(\tau-\tau) d \tau
\end{aligned}
$$

Focusing on the signal part, if $h(\tau)$ is the matched filter for $x(\tau)$ then $h(\tau)=x(T-\tau)$:

$$
\begin{aligned}
& \int_{0}^{T} x(T-\tau) x(T-\tau) d \tau \\
& =\int_{0}^{T}|x(\tau-\tau)|^{2} d \tau \\
& =\int_{0}^{T}|x(\tau)|^{2} d \tau \\
& =\varepsilon_{x} \text { the energy of } x(t) .
\end{aligned}
$$

For our antipodal signaling example, suppose we use a filter matched to $A \cos (2 \pi f \circ t)$:

$$
\begin{aligned}
h(t) & =A \cos \left(2 \pi f_{0}(T-t)\right) \\
& =A \cos \left(2 \pi f_{0} t\right)
\end{aligned}
$$

If $b=1$ then

$$
x(t)=A \cos \left(2 \pi f_{0} t\right)
$$

so the signal component at the receiver
15

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x(\tau) h(T-\tau) d \tau \\
= & \int_{0}^{T} A^{2} \cos ^{2}\left(2 \pi f_{0} \tau\right) d \tau
\end{aligned}
$$

Not
We are going to we trig identities a lot in the rest of the class. Good things to remember:

$$
\begin{aligned}
\cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta \\
\Rightarrow & \cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta)) \\
\sin (2 \theta) & =2 \sin \theta \cos \theta
\end{aligned}
$$

Sum and difference identities may also be useful.

$$
\begin{aligned}
\text { So... } & \int_{0}^{T} A^{2} \cos ^{2}\left(2 \pi f_{0} \tau\right) d \tau \\
& =\int_{0}^{K / f_{0}}\left(\frac{1}{2} A^{2}+\frac{1}{2} A^{2} \cos \left(4 \pi f_{0} \tau\right) d \tau\right. \\
\begin{array}{l}
\text { in ger of } \\
\text { cycles }
\end{array} & =\frac{1}{2} A^{2} \frac{k}{f_{0}}=\frac{1}{2} A^{2} T
\end{aligned}
$$

If $b=0$ was sent then

$$
\begin{aligned}
\int_{-\infty}^{\infty} & x(\tau) h(T-\tau) d \tau \\
& =\int_{0}^{T}-A^{2} \cos ^{2}\left(2 \pi f_{0} \tau\right) d \tau \\
& =-\frac{1}{2} A^{2} T
\end{aligned}
$$

So the signal part e time $t=T$ at the output of the matched filter is
$+\frac{1}{2} A^{2} T$ if $b=1$ bras sent
$-\frac{1}{2} A^{2} T \quad$ if $\quad b=0$ was sent

What about the noise? Well, that is a little beyond the scope of this class, but the end effect is that

$$
z(T)=\left\{\begin{array}{cl}
\frac{1}{2} A^{2} T+\text { noise } & b=0 \\
-\frac{1}{2} A^{2} T+\text { worse } & b=0
\end{array}\right.
$$

so to decide between $\hat{b}=1$ or $\hat{b}=0$ the receiver just checks the sign of $Z(T)$:

$$
\begin{array}{ll}
z(T) & \begin{array}{l}
\hat{b}=1 \\
\sum
\end{array} \quad \begin{array}{l}
\text { This is a } \\
\text { shouthoind } \\
\text { for }
\end{array} \\
\hat{b}=0 & \hat{b}=\left\{\begin{array}{lll}
1 & \text { if } z(T)>0 \\
0 & \text { if } z(T)<0
\end{array}\right.
\end{array}
$$

The energy in the noise determines the sighal-tornoose ratio (SNR), which
is an extremely important evantity for communication /DSP/ machine learning applications

What about the orthogonal srgualing? What if $b=0$ was sent so

$$
x(t)= \begin{cases}A \sin \left(2 \pi f_{0} t\right) & 0 \leq t \leq T \\ 0 & \text { oten-ise }\end{cases}
$$

If we use the $h(t)$ matched to $\cos \left(2 \pi f_{0} t\right)$:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x(t) h(T-t) d \tau \\
&=\int_{0}^{T} A^{2} \sin \left(2 \pi f_{0} \tau\right) \cos \left(2 \pi f_{0} \tau\right) d \tau \\
&=\int_{0}^{k / f_{0}} \frac{1}{2} \sin \left(4 \pi f_{0} \tau\right) d \tau \\
&=\left[\frac{-1}{8 \pi f_{0}} \cos \left(4 \pi f_{0} \tau\right)\right]_{0}^{k / f_{0}} \\
&=0
\end{aligned}
$$

phil
x
math The reason this is called an orthogonal signaling scalene is because we can think of signals as vectors and a dot product between $x(t)$ and $y(t)$ is $\quad \int_{-\infty}^{\infty} x(t) y(t) d t$

So in this way of Thinking, $\sin \left(2 \pi f_{0} t\right)$ and
$\cos \left(2 \pi f_{0} t\right)$ have dot product 50 which weans thy are at right angles to each other (i.e. Orthogonal)

So for the orthogonal scheme:

$$
z(T)= \begin{cases}\frac{1}{2} A^{2} T & \text { noise } \\ 0=1 \\ 0 & \text { w oise } \\ b=0\end{cases}
$$

So it would seem like a good rule might be

$$
\hat{b}= \begin{cases}1 & z(T)>\frac{1}{4} A^{2} T \\ 0 & z(T)<\frac{1}{4} A^{2} T\end{cases}
$$

but it torus oof we can do better... to find oof how, take ECE 322.

Try \square Consider the following decoder for the orthogonal scheme:

We analyzed the upper branch. What is the lower branch $Z_{S}(T)$ when $b=0$ or 1 is sent?

Main
The previous example can give sone insight into how signal e system analysis can help us understand engineering design by revealing tradeoffs. we have several parameters:

A - gain of the pulse
if $A T$ then $\varepsilon_{x} T$ so sNoT
\rightarrow more reliable decoding
\rightarrow higher power consumption Large A also can be expensive in hardware - big heat sinks, noulinearities, etc-
T - duration of the pulse if $T \uparrow$ then $\varepsilon_{x} T \rightarrow$ SNR T (maybe)

- but then we take more five to send 1 bit \rightarrow lower rate.
$T=K / f_{0}-$ if $K \uparrow$ then more cycles, bot for fixed T fo would increase:
\rightarrow oscillators cam be expensive, now all for are equally good
- we can lower f_{0} and K but will still suffer from harmonics! otter effects from switching.

That is, sending 0110 might look lite

So what system analysis does is let us figure out what the key parameters are (here, A and T) in terms of performance (decoding errors, rate) to let us determine the cost benefit trade offs (amplifiers, oscillators, anallyto digital courentex, etc are expensive D.

