Discrete - Time Fourier Transforms
Objectives:

- Understand the DT FT and compute the transform for simple signals
- Use the DTFT properties to express the DJFT of more complex signals in terms of simpler ones
- Understand how periodic signals are represented in the DTFT
- Use the convolution property to find the output of an LTI system
- Use the multiplication property and periodic convolution to write the DTFT of products of DT signals
- Explain ho u aliasing arrses in using the multiplication property.

Filling out the picture
The story so for in the course is:

	Periodic	General	
Continuous	CTFS	CTFT	
Discrete	DTFS		

So we cant to fill in the last box with a new transform (unsurprisingly) called the DTFT. This will let vs understand how to represent DT signals in terms of their frequency components.

For the transforms we saw before,
Transform Time Domain
Freq. domain
CTFT: general signals \longleftrightarrow continuous function $-\infty<t<\infty$ $-\infty<\omega<\infty$

CTFS: periodic signals $0 \leqslant t<T$

$$
-\infty<k<\infty
$$

DTFS : periodic signal

$$
0 \leq n \leq N-1
$$

$$
0 \leq k \leq N-1
$$

The Discrete-time Fourier Transform (DTFT) maps a general DT time domain signal $X[n]$ into a periodic continuous function $X\left(e^{j \omega}\right)$ with period 2π.

Not.
The notation $X\left(e^{j \omega}\right)$ is used instead of $X(j \omega)$ or $X(\omega)$ to distinguish it as a DTFT. This is fairly confusing notation, however. It's best to Think of if as $X(\omega)$.

Def
Def. The Discrete-Time Fourier Transform (DT IT) of a discrete time signal $x[u]$ is defined by the following analysis/syuthesis pair:

$$
\begin{aligned}
& \text { "analyses" } X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& \text { "synthesis" } \quad x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left[e^{j \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

!!!
The DTFT is deferent than the CTFT because in the frequency domain the DTFT is periodic with period 2π. To see this, look at the analysis equation:

$$
\begin{aligned}
& X\left(e^{j(\omega+2 \pi)}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega+2 \pi) n} \\
&=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} e^{-j 2 \pi n} \\
&=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \quad \text { since } e^{-j 2 \pi n}=1 \\
& \text { for integer } n
\end{aligned}
$$

This shows the DTFT is periodic.
phil
One way to think about why the DJFT is periodic is to thin about DJ signals as sampled verisous of

CT signals:

$$
x[n]=x_{c}\left(n T_{s}\right)
$$

where the sampling interval T_{s} tells us hoer often we are taking a sample. Measuring the frequency content of $x[n]$ is like measuring the frequency content of $x_{c}(t)$ indirectly - because the DT signal depends on the sampling frequency $f_{s}=1 / T_{s}$. So in a sense a frequency w for $x[n]$ is measured relative to a frequency in $X_{c}(t)$.

Ex
Example: $x[n]=a^{n} v[n] \quad|a|<1$
Then

$$
\begin{aligned}
x\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} a^{n} v[n] e^{-j \omega n} \\
& =\sum_{n=0}^{\infty}\left(a e^{-j \omega}\right)^{n} \\
& =\frac{1}{1-a e^{-j \omega}} \quad \text { Geometric series }
\end{aligned}
$$

Going back:

$$
\begin{aligned}
x[k] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{1-a e^{-j \omega}} e^{j \omega k} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{n=0}^{\infty} a^{n} e^{-j \omega(n-k)} d \omega \\
& =\sum_{n=0}^{\infty} a^{n} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-j \omega(n-k)} d \omega \\
& =a^{k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-j \omega(k-k)} d \omega \text { less } n= \\
& =a^{k} \sqrt{ } \quad
\end{aligned}
$$

Example: $\quad x[n]=\delta[n]$

$$
x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=e^{-j \omega 0}=1
$$

We typically only graph one period of the DTFT

Example: $\quad X\left(e^{j \omega}\right)= \begin{cases}1 & 0 \leqslant|\omega|<\lambda \\ 0 & \lambda \leqslant|\omega|<\pi\end{cases}$

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int_{-\lambda}^{\lambda} e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi}\left[\frac{1}{j n} e^{j \omega n}\right]_{-\lambda}^{\lambda} \\
& =\frac{1}{2 \pi}\left(\frac{1}{j n} e^{j \lambda n}-\frac{1}{j n} e^{-j \lambda n}\right) \\
& =\frac{1}{\pi n} \sin (\lambda n)
\end{aligned}
$$

perhaps you are getting a sins-ing feeling..

Mann
With the DJFT we have to worry about convergence issues. That is,

$$
\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \longrightarrow \infty
$$

It turns out there are at least taro conditions which each guarantee convergence:

1) Absolute summability:

$$
\sum_{n=-\infty}^{\infty}|x[n]|<\infty
$$

2) Square summability ($=$ finite energy)

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty
$$

We can use these to shoer the DTFT does exist, not that it does not exist.

Ex
Example: $\quad x[n]=U[n]$ is neither absolutely nor square sermmable. Does of have a DT FT???

Try \square Show that $x[n]=\frac{1}{1+|n|}$ is square summable bot not absolutely summable.

Main
What about the inverse transform?

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega t} d t
$$

This integral is over a finite period of length 2π so we don't have any rises - compare this to the DTFS where only sum over 1 period.

DTFTs for periodic signals
Looking at the analysis equations for the DTFT and DTFS, they look similar:

$$
\begin{array}{ll}
a_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \omega_{0} k n} & \text { DTFS } \\
x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} & \text { DTFT }
\end{array}
$$

If $x[n]$ is periodic with period N, what happens to $X\left(e^{j \omega}\right)$?

Already we are in trouble: periodic signals have infinite energy! we had an issue like this with periodic signals for the CTFT - if $x(t)$ was periodic, $\sigma f\{x(t)\}$ had some δ-functions. The same thing happens with the DTFS:

$$
e^{j \omega_{0} n} \stackrel{g}{\longleftrightarrow} \sum_{l=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}-2 \pi l\right)
$$

!!!
This is something special about the DTFT - complex exponentials transform into impulse trains. Since $X\left(e^{j \omega}\right)$ is periodic, we canst have just one δ-function - they repeat every 2π.

Main

To see why this is true, the inverse transform
is easier since it involves only an integral over 2π :

$$
\begin{aligned}
x[n] & =\int_{-\pi}^{\pi} \frac{1}{2 \pi} \sum_{l=-\infty}^{\infty} 2 \pi \delta\left(\omega+\omega_{0}-2 \pi l\right) e^{j \omega n} d \omega \\
& =\sum_{l=-\infty}^{\infty} \int_{-\pi}^{\pi} e^{j\left(\omega_{0}+2 \pi l\right) n} \delta\left(\omega-\omega_{0}-2 \pi l\right) d \omega \\
& =\int_{-\pi}^{\pi} e^{j \omega 0 n} \delta\left(\omega-\omega_{0}\right) d \omega \quad \text { if }\left|\omega_{0}\right|<\pi \\
& =e^{j \omega_{0} n}
\end{aligned}
$$

From this we immediately have sin and cos:

$$
\begin{aligned}
\cos \left(\omega_{0} n\right)=\pi & \sum_{l=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right) \\
& +\pi \sum_{\ell=-\infty}^{\infty} \delta\left(\omega+\omega_{0}-2 \pi l\right)
\end{aligned}
$$

$$
\begin{array}{r}
\sin (\omega \circ n)=\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi \ell\right)_{\infty}-\frac{\pi}{j} \sum_{\ell=-\infty}^{\infty} \delta\left(\omega+\omega_{0}-2 \pi l\right) \\
x\left(e^{j \omega}\right) \quad
\end{array}
$$

What if $x[u]$ is periodic with period N and has DTFS

$$
a[n]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \omega_{0} k n} ?
$$

Go from the synthesis equation:

$$
\begin{aligned}
x[n] & =\sum_{n=0}^{N-1} a[m] e^{j \omega_{0} k n} \quad \omega_{0}=\frac{2 \pi}{N} \\
x\left(e^{j \omega}\right) & =\sum_{n=0}^{N-1} a[k] \sum_{l=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0} k-2 \pi l\right)
\end{aligned}
$$

This has δ functions at every multiple of $\frac{2 \pi}{N}$:

$$
X\left(e^{j \omega}\right)=\sum_{m=-\infty}^{\infty} 2 \pi a[m] \delta\left(\omega-\frac{2 \pi m}{N}\right)
$$

So from the DTIS we can get the DTFT.

Ex Example: Suppose

$$
x[n]=\sum_{m=-\infty}^{\infty} \delta[n-m N]
$$

So this has impulses at multiples of N.

$$
\begin{aligned}
a[h] & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j h(2 \pi / N) n} \\
& =\frac{1}{N} \text { since } x[n]=0 \text { for } n=1,2, \ldots N-1
\end{aligned}
$$

Thus $X\left(e^{j \omega}\right)=\frac{2 \pi}{N} \sum_{m=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi m}{N}\right)$
Main
This last example shows an important property: the DTFT of a periodic impulse train in time
is a periodic impulse train in frequency.

DTFI Properties
The DTFT hus many of the same properties as The other transforms we have seen:

Linearity, $f\{a \times[n]+b y[n]\}=a X\left[e^{j \omega}\right]+b y\left(e^{j \omega}\right)$
Time and frequency shift:

$$
\begin{aligned}
& \sigma\left\{x\left[n-n_{0}\right]\right\}=e^{-j \omega n_{0}} x\left(e^{j \omega}\right) \\
& \sigma=x\left(e^{j\left(\omega-\omega_{0}\right)}\right)
\end{aligned}
$$

Time reversal: $\quad \sigma f\{x[-n]\}=X\left(e^{-j \omega}\right)$
If $x[n]$ is even, $x[n]=x[-n]$ so

$$
X\left(e^{j \omega}\right)=X\left(e^{-j \omega}\right) \text { is even }
$$

If $x[n]$ is odd, $x[n]=-x[-n]$ so

$$
X\left(e^{j \omega}\right)=-X\left(e^{-j \omega}\right) \text { } 刀 \text { odd }
$$

Conjugation / Conjugate Symmetry:

$$
\sigma \mathcal{F}\left\{x^{*}[n]\right\}=X^{*}\left(e^{-j \omega}\right)
$$

So if $x[n]$ is real, $x[n]=x^{*}[n]$, so

$$
X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right)
$$

Conjugate symmetric
If $x[n]$ is real and even
$X\left(e^{j \omega}\right)=X^{*}\left(e^{\delta \omega}\right)$ is real and even
If $x[n]$ is imaginary, $x[n]=-x^{* *}[n], 50$

$$
X\left(e^{j \omega}\right)=-X *\left(e^{-j \omega}\right)
$$

If $x[n]$ is real and odd,

$$
x\left(e^{j \omega}\right)=-x^{*}\left(e^{j \omega}\right) \text { is imaginary }
$$ and odd

We have (for real $x[n]$):

$$
\begin{aligned}
& x_{\text {even }}[n] \stackrel{\sigma_{F}}{\rightleftarrows} \operatorname{Re}\left\{x\left(e^{j \omega}\right)\right\} \\
& x_{\text {odd }}[n] \stackrel{\sigma_{f}}{\longleftrightarrow} \operatorname{Im}\left\{x\left(e^{j \omega}\right)\right\}
\end{aligned}
$$

Try \square Ting proving these properties yourself using the definitions and similar arguments as those in the CTFT / CTFS/DTFS.

Main
First difference: $\sigma^{\circ}\{x[n]-x[n-1]\}$?
This is easy using linearity and time shift:

$$
\sigma_{f}\{x[n]-x[n-1]\}=\left(1-e^{-j \omega}\right) \times\left(e^{j \omega}\right)
$$

Now what about an accumulator:

$$
y[n]=\sum_{m=-\infty}^{n} x[m]
$$

we have an issue since this looks not summable/stable as a system. We can get around this with a δ - function:

$$
\begin{aligned}
& Y\left(e^{j \omega}\right)= \frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right) \\
&+\pi X\left(e^{j 0}\right) \sum_{l=-\infty}^{\infty} \delta(\omega-2 \pi \ell) \\
& \text { value }
\end{aligned}
$$

Ex
Before we had sone issue with $x[n]=v[n]$ it was neither summable hor square summable. we can use our knowledge of systems to help
$U[n]$ is the output of an accumulator with input $\delta[n]$:

$$
\begin{aligned}
& g[n]=\delta[n]=\sum_{m=-\infty}^{n} \delta[n]= \begin{cases}0 & n<0 \\
1 & n \geq 0\end{cases} \\
& v[n]=0,1 \\
& 1
\end{aligned}
$$

So

$$
\begin{aligned}
& x[n]=\sum_{m=-\infty}^{n} g[n] \\
& X\left(e^{j \omega}\right)=\frac{1}{1-e^{-j \omega}} G\left(e^{j \omega}\right)+\pi G\left(e^{j-0}\right) \\
& \sum_{l=-\infty}^{\infty} \delta(\omega-2 \pi l) \\
&=\frac{1}{1-e^{-j \omega}} 1+\pi \sum_{e=-\infty}^{\infty} \delta(\omega-2 \pi l)
\end{aligned}
$$

Upsampling and Downsampling
DJ signals canst be squished and stretched in time the CT signals. Two core operations in DSP are upsampling and downsampling:

These are easy to visualize:

For upsampling

$$
y[k]= \begin{cases}x[k / N] & \text { if } k \bmod N=0 \\ 0 & \text { otherwise }\end{cases}
$$

For docunsampling

$$
y[h]=x[k N]
$$

Try $\sqrt{ }$ What happens when you downsample $a^{n} v[n]$ by a factor of 2? A factor of 3? A general factor of l ?

Downsamplring destroys information in the signal, so in general we cannot say as much about the DTFT of a downsampled signal (yet). For upsampling, however:

$$
y[n] \stackrel{\text { 可 }}{\longrightarrow} X\left(e^{j \omega N}\right)
$$

That rs, if $x[n]$ is upiampled by a factor of N then the spectrum is squished by a factor of N.

Ex
Example: $x[n]=v[n+3]-v[n-4]$

a box between -3 and 3 We might sersgeat this FT's into a sine... but a sine rs not periodic!

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=\sum_{n=-3}^{3} x[n] e^{-j \omega n} \\
& =1+2 \cos (\omega)+2 \cos (2 \omega)+2 \cos (3 \omega) \\
& \text { seems good but of it was } \\
& \text { a box from - N loN } \\
& \text { this might get ugly... } \\
& =\sum_{n=-3}^{3} e^{-j \omega n} \\
& =e^{j \omega 3} \sum_{n=0}^{6} e^{-j \omega n} \\
& \text { trying to get a } \\
& \text { geometric series } \\
& =e^{j \omega} \sum_{n=0}^{6}\left(e^{-j \omega}\right)^{n} \\
& =\frac{e^{j \omega 3}}{1-e^{-j \omega}} \frac{e^{j \omega / 2}}{e^{j \omega / 2}} \\
& =\frac{e^{j \omega(3+1 / 2)}-e^{-j \omega(3+1 / 2)}}{e^{j \omega / 2}-e^{-j \omega / 2}}
\end{aligned}
$$

Main TT is is the discrete analogue of the since function. Since the DTFT is periodic, we need this function to be periodic. See the text (Ex 5.3) for a picture. In general

$$
x[n]=\left\{\begin{array}{ll}
1 & |n| \leqslant N \\
0 & \text { otherwise }
\end{array} \stackrel{\sigma_{f}}{\longleftrightarrow} X\left(e^{j \omega}\right)=\frac{\sin \left(\left(N+\frac{1}{2}\right) \omega\right)}{\sin (1 / 2 \omega)}\right.
$$

Try
Prove this general formula using the tricks used in the example for $N=3$.

Ex
Example:

Find $X\left(e^{j \omega}\right)$.
We can manipulate $x[n]$ into a form that we recognize:

Then

$$
z[h]=\frac{00404040}{-3-2-10,23}
$$

We need to find $Z\left(e^{j \omega}\right)$ and reverse these operations:

!!! - The thing to be careful about is if these steps are reversible. In particular, we need the reverse system to recover our original $x[n]$

This works in this case, bot if we had $X[n]$ as this signal:

Then the downsampler would make it such that $z[n]$ would lose the values at 1 and 5 , so the reverse system would not recover $x[n]!$

We already know

$$
z\left(e^{j \omega}\right)=\frac{\sin (7 / 2 \omega)}{\sin (\omega / 2)}
$$

so

$$
\begin{gathered}
y[n]=z[n-3] \longleftrightarrow Y\left(e^{j \omega}\right)=e^{-j 3 \omega} \frac{\sin \left(\frac{7}{2} \omega\right)}{\sin \left(\frac{1}{2} \omega\right)} \\
x[n]=\underset{\substack{\text { upsampled } \\
y[n] \\
b y 2}}{\longleftrightarrow} x\left(e^{j \omega}\right)=e^{-j 6 \omega} \frac{\sin (7 \omega)}{\sin (\omega)}
\end{gathered}
$$

Phil
Upsampling slows a signal down and 20 makes all the frequencies lower by a multiplicative factor This is different than a frequency shift, Which moves frequencies by an additive factor.

Main
Differentiation sn frequency.
If we look at $\frac{d}{d \omega} \times\left(e^{j \omega}\right)$, we get

$$
\begin{aligned}
\frac{d}{d \omega} X\left(e^{j \omega}\right) & =\frac{d}{d \omega} \sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[n] \frac{d}{d \omega} e^{-j \omega n} \\
& =-j \sum_{n=-\infty}^{\infty} x[n] n e^{-j \omega n} \\
& =-j \sigma \frac{j}{\infty}\{n \times[n]\}
\end{aligned}
$$

Thus

$$
\sigma\{n x[n]\} \longleftrightarrow j \frac{d}{d \omega} x\left(e^{j \omega}\right)
$$

Parseral's Relation

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|x\left(e^{j \omega}\right)\right|^{2} d \omega
$$

total energy in $x[u]$
(time domain)
average power in $X\left(e^{j \omega}\right)$
(frequency domain)

To see a nice example of how to use these properties, see Example 5.10 in the book.

Convolution and Multiplication
And now for our most important fact in the course:
\square
Convolution in time

$$
y[n]=(x * h)[n] \longleftrightarrow Y\left(\sigma^{j} \longrightarrow Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left[e^{j \omega}\right)\right.
$$

Multiplication $\longleftarrow \sigma_{f} \longrightarrow$ Periodic convolution in time in frequency

$$
y[n]=x[n] h[u] \longleftrightarrow \frac{\sigma_{f}}{\longleftrightarrow} \longleftrightarrow\left(e^{j \omega}\right)=\frac{1}{2 \pi}(X \geqslant H)\left(e^{j \omega}\right)
$$

really: $Y(\omega)=\frac{1}{2 \pi}(X \circledast H)(\omega)$
$E x$
Example: Suppose we have an LTI filter:

$$
n[n]=\frac{1}{\pi n} \sin \left(\frac{\pi}{4} n\right) .
$$

What is the output of this foster to the following inputs?
a) $x[n]=a^{n} u[n] \quad|a|<1$, a real
b) $x[n]=\sin \left(\frac{\pi}{2} n\right)+\cos \left(\frac{\pi}{8} n\right)$
c) $x[n]=\frac{\sin (\pi / 6 n)}{n}$

We have the following DTFT for $h[u]$

$$
\left.\begin{array}{rl}
H\left(e^{j \omega}\right) & =\left\{\left.\begin{array}{ll}
1 & 0 \leqslant|\omega|<\omega_{0} \\
0 & \omega_{0} \leqslant|\omega|<\pi
\end{array} \right\rvert\, H\left(e^{j \omega}\right)\right.
\end{array}\right\}
$$

So this is a loupass filter with cut off $\pi / 4$. Since the system output is $(x * h)[u]$, we just need to calculate the product of the transforms:
a)

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & \frac{1}{1-a e^{-j \omega}} \\
Y\left(e^{j \omega}\right)= & X\left(e^{j \omega)} H\left(e^{j \omega}\right)=\left\{\begin{array}{cc}
\frac{1}{1-a e^{-j \omega}} & |\omega|<\pi / 4 \\
0 & \text { otherwise } \\
y[n]= & \frac{1}{2 \pi} \int_{-\pi / 4}^{\pi / 4} \frac{1}{1-a e^{-j \omega}} e^{j \omega n} d \omega \\
= & \frac{1}{2 \pi} \sum_{l=0}^{\infty} \int_{-\pi / 4}^{\pi / 4}\left(a e^{-j \omega}\right)^{l} e^{j \omega n} d \omega \\
= & \frac{1}{2 \pi} \sum_{l=0}^{\infty} \int_{-\pi / 4}^{\pi / 4} a^{l} e^{j \omega(n-l)} d \omega \\
= & \frac{1}{2 \pi} \sum_{\substack{l=0}}^{\infty} a^{l}\left[\frac{1}{j(n-l)} e^{-j \omega(n-l)}\right]_{-\pi / 4}^{\pi / 4} \\
& +\frac{1}{2 \pi} \int_{-\pi / 4}^{\pi / 4} a^{n} 1 d \omega
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} a^{n}+\sum_{\substack{l=0 \\
l \neq n}}^{\infty} a^{l} \frac{1}{s(n-l)}\left(e^{-j \pi / 4(n-l)}-e^{j \pi / 4(n-l)}\right) \\
& =\frac{1}{4} a^{n}+\sum_{\substack{l \neq n \\
l=0}}^{\infty} \frac{-1}{n-l} 2 a^{l} \sin \left(\frac{\pi}{4}(n-l)\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
x\left(e^{j \omega}\right)=\pi \sum_{l=-\infty}^{\infty} & \delta\left(\omega-\frac{\pi}{2}-2 \pi l\right) \\
& +\pi \sum_{l=-\infty}^{\infty} \delta\left(\omega-\frac{\pi}{8}-2 \pi l\right)
\end{aligned}
$$

The first sum are δ functions at

$$
\cdots \frac{-3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \cdots
$$

\longrightarrow cutoff is at $\pm \frac{\pi}{4}$ so none Survive The second sum are δ-functions at

$$
\cdots,-\frac{7 \pi}{8}, \frac{\pi}{8}, \frac{9 \pi}{8}, \cdots
$$

$\longrightarrow \pi / 8$ is inside the cutoff \rightarrow all survive

$$
Y[n]=\cos \left(\frac{\pi}{8} n\right)
$$

c) $X\left(e^{j \omega}\right)$ is a lowpass filter with height π and cutoff $\pi / 6$:

So the filter survives: $Y\left(e^{j \omega}\right)=x\left(e^{j \omega}\right)$
and

$$
y[n]=\frac{\sin (\pi / 6 n)}{n}
$$

$n_{\text {ain }}$
For multiplication, we have that

$$
x[n] h[n] \rightleftarrows \frac{\sigma_{f}}{2 \pi} x\left(e^{j \omega}\right) \stackrel{\leftrightarrow}{2} H\left(e^{j \omega}\right)
$$

but so for we have only defined periodic convolutions for discrete signals. But for continuous functions it works similarly:

$$
X\left(e^{j \omega}\right) * H\left(e^{j \omega}\right)=\int_{\langle 2 \pi\rangle} X\left(e^{j \varphi}\right) H\left(e^{j(\omega-\varphi)}\right) d \varphi
$$

We can take
This looks like a the integral over any interval of length 2π since both $X\left(e^{j \omega}\right)$ and $H\left(e^{j \omega}\right)$ are periodic except we restrict with period 2π the integral to be over any interval of length 2π. This convolution is not so hand - just more integrals.

Ex \square
Example: Let's take the product of two LPFs:

$$
\begin{aligned}
& y[n]=\frac{\sin \left(\frac{3 \pi}{4} n\right)}{\pi n} \cdot \frac{\sin \left(\frac{\pi}{2} n\right)}{\pi n}=h[n]
\end{aligned}
$$

The way to do this is to convolve one period of each and then mate copies e period 2π
and then add them bach up.
(1) Convolve one copy of each: (douif forget the $\frac{1}{2 \pi}$)

$$
=
$$

Doing this graphically - This rs why being comfortable with convolution
Note this extends beyond $[-\pi, \pi]$ rs important!
(2) Make copies every 2π :

Note that because convolving one copy gives something that extends beyond $[-\pi, \pi]$, the periodic repetition overlaps.

This overlap between copies is called aliasing.

If's a major issue in DSP.

Try \mp Try a couple of periodic convolutions for yourself. Start with LPFs like those above. Suppose

$$
\begin{aligned}
& x_{1}[n]=\text { LPF with cutoff } \alpha \\
& x_{2}[n]=\text { LPF with cutoff } \beta
\end{aligned}
$$

Find a condition on α, β such that there IS no aliasing in $y[n]=x_{1}[n] x_{2}[n]$.

Main
Duality $\&$ relationship to other transforms
As with the CTFT, we have some similarities in going from $t \rightarrow \omega$ and $\omega \rightarrow t$:

$$
\begin{aligned}
& x\left[n-n_{0}\right] \stackrel{\sigma f}{\longleftrightarrow} e^{-j \omega n_{0}} x\left(e^{j \omega}\right) \\
& e^{j \omega_{0} n} x[n] \stackrel{\sigma}{\longleftrightarrow} x\left(e^{j\left(\omega-\omega_{0}\right)}\right)
\end{aligned}
$$

Similarly, if we know a transform pair, sometimes an avalogeors pair holds in reverie.

DTFT and DTFS
If $x[n]$ is periodic with period N, then it has a DTFS $a[k]$ for $\omega_{0}=\frac{2 \pi}{N}$:

$$
a[n]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n}
$$

But now $a[h]$ is a periodic discrete sequence so it has a DTFT:

$$
\begin{aligned}
A\left(e^{j \omega}\right) & =\sum_{k=-\infty}^{\infty} a[k] e^{-j \omega n} \\
= & \frac{1}{N} \sum_{n=0}^{N-1} \sum_{l=-\infty}^{\infty} 2 \pi x[n] \delta\left(\omega-n \omega_{0}-2 \pi l\right)
\end{aligned}
$$

This puts a train of δ-functions at frequencies

$$
\frac{2 \pi n}{N} \text { for all } n \text {, with } x[n] \cdot \frac{2 \pi}{N}
$$

So the DTFT of the DTFS of $x[n]$ makes a copy of the DT periodic signal $x[n]$ into the 2π periodic signal $A\left(e^{j \omega}\right)$.

DTFT and CTFS: The DTFT looks a bit like a reverse version of a CTFS:

CTFS

$$
\begin{array}{ll}
x(t)=\sum_{k=-\infty}^{\infty} a[k] e^{j k \omega_{0} n} x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
a[k]=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
\end{array}
$$

What if we look at $y[n]=x[-n]$? Then

$$
y[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{-j \omega n} d \omega
$$

Which is the CTFS of $X\left(e^{j \omega}\right)$!

Example: Suppose $Z\left(e^{j \omega}\right)=\cos (\omega)$
 what is $z[n]$?

We know that CTFS of

$$
z(r)=\cos (r)
$$

is $z[-n]$
So: the CTFS of $\cos (r)=\frac{1}{2} e^{j r}+\frac{1}{2} e^{-j r}$ is
 by direct inspection.

Letting $\quad y[n]=\frac{1}{2} \delta[n+1]+\frac{1}{2} \delta[n-1]$
be this signal, we see that

$$
z[-n]=y[n]
$$

or

$$
z[n]=y[-n]=\frac{1}{2} \delta[n+1]+\frac{1}{2} \delta[n-1]
$$

Not much changed.
How about $z\left(e^{j \omega}\right)=\sin (\omega)$?
Then $y[n]=\frac{-1}{2 j} \delta[n+1]+\frac{1}{2 j} \delta[n-1]$

$$
z[n]=\frac{1}{2 j} \delta[n+1]-\frac{1}{2 j} \delta[n-1]
$$

