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The Dani of Irian Jaya are a stone-age
Melanesian people who have provided

an empirical basis for the study of cross-
cultural perception and cognition1–3.
Although they had only two terms for
describing colour, the Dani memory for
colour seemed to be much like that of mod-
ern English speakers. We have investigated
another stone-age culture, the Berinmo of
Papua New Guinea, for the way in which
they categorize colours, but the results do
not support the idea that colour categories
could be universal.

According to the linguistic relativity
hypothesis4,5, which is still influential, we
construct our understanding of the world
through language. Whorf 4 famously argued
that, to an Eskimo, it would be unthinkable
to use the same word for all types of snow
because of its wide range of types and dif-
ferent uses.

We investigated colour in a remote, pre-
viously unstudied, hunter-gatherer tribe,
the Berinmo, which lives on the upper
reaches of the Sepik River in Papua New
Guinea. When Berinmo subjects were
asked to name the 160 colours in the stan-
dard Munsell array, thay used five basic
colour terms6. The range and boundaries of
these terms showed good intra-subject
concordance, and can be seen in Fig.1
alongside the eight basic chromatic terms
in English.

We replicated the Dani experiment with
the Berinmo. The accuracy with which they
remembered colours bore a striking simi-
larity to the Dani; both groups of Melane-
sian subjects were very poor at this (9.6 and
7.7 out of 40, respectively). However, statis-
tical analysis showed that, for both studies,
the best statistical fit (that with the lowest
stress value) was between Melanesian nam-
ing and Melanesian memory (Table 1a).
This finding is consistent with the linguistic
relativity hypothesis, but not with the inter-
pretation of the original study.

The differences between English and
Berinmo allow a further critical test of the
contrast between colour universals and

linguistic relativity. Berinmo does not mark
the distinction between blue and green, but
it has a colour boundary (between ‘nol’
and ‘wor’) in a position that does not exist
in English. We investigated categorical
effects7,8 across both the blue–green and the
nol–wor boundaries. We asked subjects to

remember a colour over an interval of 30
seconds1,2 and then select the same colour
from a pair of similar alternatives. Some-
times the incorrect choice was from the
same colour category and sometimes from
a different one. We also added a 5-second-
interval condition for the Berinmo as they
had difficulty remembering blue–green
samples for 30 seconds.

English subjects showed the expected
advantage for cross-category blue–green
decisions but not for nol–wor decisions;
Berinmo subjects showed exactly the oppo-
site pattern. The Berinmo showed no sign
of a cross-category advantage for blue–
green stimuli, but maintained their cross-
category advantage for nol–wor stimuli 
both at 30 seconds and at 5 seconds. These
results indicate that categorical perception
occurs, but only for speakers of the language
that marks the categorical distinction, which
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FFiigguurree  11 Distribution of English and Berinmo colour names. The Munsell system provides equally spaced
samples in three dimensions, but is shown here as a Mercator projection of hue (horizontal axis) against
lightness (vertical axis). The colours used to denote colour categories on these Mercator projections are for
illustration only. Eight colour terms for English and five for Berinmo are shown. Dots on English naming data
represent the position of focal colours2. Numbers on the Berinmo naming data represent the number of sub-
jects who designated that colour as best example of the category. R, red; Y, yellow; G, green; B, blue; P, pink.
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Table 1  Statistical analysis of language data

a Goodness of fit for multidimensional scaling solutions

Dani naming versus Dani memory 0.126
Dani memory versus US memory 0.161
Berinmo naming versus Berinmo memory 0.158
Berinmo memory versus English memory 0.256

b Mean trials to criteria in colour-categorization tasks

Blue vs green Green1 vs green 2 Nol vs wor Yellow vs green

English speakers        3.2 5.9 3.8 1.4
Berinmo speakers      11.43 10.57 2.2 3.6

a, Measures of stress (departure from goodness of fit) are shown for comparison of naming and memory data. Low
values indicate high goodness of fit. Data for comparisons between US naming and US memory are from ref. 1 and
are compared with those from Berinmo and English subjects. In both cases, the fit between naming and memory is
better than the fit between memory across language groups. b, Mean number of blocks to error-free performance.
Categorizations are achieved more rapidly if they are consonant with distinctions made in the language of the subject.
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is consistent with the linguistic relativity
hypothesis.

If categories always form around natural
fault lines in perceptual colour space, it
should be relatively easy to learn another
language’s colour categories. To test this
version of the universalist position, we
asked English speakers to learn the nol–wor
distinction and Berinmo speakers to learn
the blue–green and yellow–green distinc-
tions. For comparison, subjects were also
asked to categorize stimuli in a manner
consonant with the colour names of their
own language. In addition, subjects learned
a distinction not marked in either language:
that between two types of green (‘green 1’
and ‘green 2’). All tasks were made non-
trivial by presenting only one stimulus at a
time and by the inclusion of marginal
examples of each category.

Berinmo subjects found learning to
divide colours into green 1 and green 2 no
harder than dividing them into blue and
green; English speakers found the
blue–green task easier. Berinmo subjects
found the nol–wor task easier than the yel-
low–green task, whereas English subjects
found the reverse. Tasks in which subjects
divided stimuli varying in hue, lightness
and saturation into two colour categories
are performed better if the division corre-
sponds to a linguistic, rather than a sup-
posed universal, distinction (Table 1b).

Our results from these experiments are
consistent with there being a considerable
degree of linguistic influence on colour cate-
gorization, and place constraints on the type
of neuron likely to underpin it. Neurons
have been discovered in monkeys that are
highly selective to wavelength9, to combina-
tions of wavelength and brightness10 and to
colour constancy9, but it is unlikely that
there are neurons that respond to all exam-
ples of a colour category unless their opera-
tion is susceptible to linguistic modification.
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Why biodiversity
surveys are good value

Article 8 of the Convention on Biological
Diversity obliges contracting parties to
establish protected areas for conservation.
This can be achieved in smaller networks of
reserves if their design is based on how well
different sites complement one another bio-
logically, rather than on more commonly
used criteria, such as species richness or
simple availability for acquisition1,2. How-
ever, this increase in efficiency3 requires
species lists for each candidate site, and
obtaining such data can be expensive; for
example, a detailed survey of five taxa
across 15,000 km2 of forest in Uganda took
nearly 100 person-years and cost about
US$1 million4,5. Here we ask whether
investing in such surveys makes economic
sense, or whether conservation agencies
would be better advised to continue follow-
ing more traditional reserve selection pro-
cedures, at the cost of having to conserve
larger reserve networks.

This trade-off is shown in Fig. 1. Using a
simple reserve selection rule (such as buy-
ing relatively intact land as it becomes avail-
able1) results in an inefficient reserve net-
work, whose cumulative representation of
biodiversity rises only slowly with increas-
ing area. But if a complementarity-based
algorithm is used instead, the network
needed to achieve a particular conservation
goal is reduced by an area a. The greater cost
of conserving the less efficient network has
a present value equal to [a(x&y/r)], where x
is the mean purchase cost of a unit area of
land for conservation, and y is the mean cost
per unit area of effective maintenance, dis-
counted into the future at an annual rate r.
In contrast, conducting a high-quality sur-
vey costs zA, where A is the total area of all
the candidate sites surveyed, and z is the
survey cost per unit area. It follows that
investing in surveys is good value provided
that zA*[a(x&y/r)] or alternatively that

z*[(a/A)(x&y/r)]. This therefore sets the
upper limit of cost-effective surveys for
reserve selection.

There are few published data with which
to parametrize this simple model. Conserva-
tively, we suggest that a/A (the relative saving
in reserve area achieved by tackling comple-
mentarity) is commonly at least 5%; it will
often be far higher1. Estimates for x and y,
obtained from a diverse range of sources and
expressed in 1990 US$, are summarized in
Table 1. Using appropriate values for r
(from 5% to 20%), we can then estimate
[(a/A)(x&y/r)]. Marked variation in land
prices6 and labour costs means that this
upper limit of cost-effective surveys varies
enormously but, wherever data are available,
this greatly exceeds the likely cost of high-
quality surveys. For instance, in Uganda, at
r410%, [(a/A)(x&y/r)]ö$800 per km2,
whereas the true value of z is less than one-
tenth of this, at $58 per km2. Reversing this
calculation, detailed inventories would have
to yield area savings of less than 0.4%  — that
is, a/A*z/[x&y/r] — for them not to be
worthwhile. This condition is extremely
unlikely to be met1. So, in Uganda, detailed
biodiversity inventories represent a very
good conservation investment.

In other developing countries, the costs
of detailed surveys for reserve selection are
similar (zö$65 per km2 in Sri Lanka7, and
zö$135 per km2 in Yemen; A. Miller, per-
sonal communication), and far less than
corresponding values for [(a/A)(x&y/r)],
which range from several hundred to a few
thousand dollars per km2 (Table 1). In devel-
oped countries, [(a/A)(x&y/r)] is typically
much higher (Table 1) and, although the
labour costs of surveys are also high, these
are generally offset by the greater availability
of existing inventory data. As a result, in the
United Kingdom, zö$1,500 per km2 (M.
Drake and R. Porley, personal commu-
nication), which is much less than
[(a/A)(x&y/r)]. In Australia, on average,
z**[(a/A)(x&y/r)], at just $5 per km2 (ref.
8). As in some other countries, the Aus-
tralian mean value masks huge local varia-
tion in all costs; nevertheless, in arid areas
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Table 1 Estimates of the costs of buying and maintaining nature reserves

Cost of land Cost of effective Present value of maintenance, (a/A)(x&y/r)

purchase, maintenance, y/r ($ per km2) (assuming a/A45%)

x ($ per km2) y ($ per km2) r45% r410% r420% ($ per km2)

Uganda 12,628 383 7,660 33,,883300 1,915 882233

Ghana12 45,215 236 4,720 22,,336600 1,180 22,,337799

South Africa13 21,896 1,600 32,000 1166,,000000 8,000 11,,889955

Brazil12,14 10,776 169 3,380 11,,669900 845 662233

Belize12,15 14,087 350 7,000 33,,550000 1,750 887799

UK 100,523 6,443 112288,,886600 64,430 32,215 1111,,446699

USA12 78,730 2,053 4411,,006600 20,530 10,265 55,,999900

Australia8,12 385 359 77,,118800 3,590 1,795 337788

Figures are in 1990 US$ and often mask considerable local variation. Figures in bold are based on r310% for
developing countries and r35% for developed countries, but our conclusions are robust for 5%*r*20%. Data were
generously provided by T. Butynski, P. Howard, the African Wildlife Foundation, Conservation International, Fauna and
Flora International, Kwa Zulu Natal Nature Conservation Service, Royal Society for the Protection of Birds, the Nature
Conservancy, and the Western Australia Department of Conservation and Land Management, and cited sources.


