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Abstract
During the 1990’s and early 2000’s, cognitive neuroscience investigations of human category
learning focused on the primary goal of showing that humans have multiple category learning
systems and on the secondary goals of identifying key qualitative properties of each system and of
roughly mapping out the neural networks that mediate each system. Many researchers now accept
the strength of the evidence supporting multiple systems, and as a result, during the past few years,
work has begun on the second generation of research questions – that is, on questions that begin
with the assumption that humans have multiple category learning systems. This article reviews
much of this second generation of research. Topics covered include: 1) How do the various
systems interact? 2) Are there different neural systems for categorization and category
representation? 3) How does automaticity develop in each system?, and 4) Exactly how does each
system learn?
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Cognitive neuroscience investigations of human category learning began in the second half
of the 1990’s.1,2 During the ensuing decade, much of this work focused on the primary goal
of showing that humans have multiple category learning systems and on the secondary goals
of identifying key qualitative properties of each system and of roughly mapping out the
neural networks that mediate each system. Although this work continues, many researchers
now accept the strength of the evidence supporting multiple systems. As a result, during the
past few years, work has begun on a second generation of research questions. By second
generation, we mean questions that begin with the assumption that humans have multiple
category learning systems. Included in this list are questions such as: 1) How do the various
systems interact? 2) Do different neural networks mediate categorization and category
representation? 3) How does automaticity develop in each system?, and 4) Exactly how does
each system learn? Although a number of recent publications review work on the first
generation of research questions,3,4 no existing reviews focus on these second generation
questions. This article reviews this more recent work.

Brief Review of First Generation Research
With the realization that humans might have different category-learning systems that are
each adept at learning about different types of category structures came more careful
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attempts to characterize existing category-learning tasks. One popular nomenclature
includes rule-based (RB), information-integration (II), prototype-distortion, and unstructured
category-learning tasks.5 Briefly, RB tasks are those where the optimal strategy is easy to
verbalize (e.g., long objects are in one category and short objects are in another) and the
categories can be learned via a logical reasoning process (e.g., by hypothesis testing).
Optimal performance in II tasks requires integrating perceptual information from different
stimulus components at a pre-decisional level. In II tasks the optimal strategy is not easily
verbalized. In prototype distortion tasks, the category exemplars are created by randomly
distorting a category prototype. Finally, in unstructured (or ad hoc) tasks the category
exemplars are defined arbitrarily, rather than according to similarity (as in prototype
distortion) or on the basis of some abstract logical (as in RB) or mathematical (as in II)
relationship. There are proposals that these four tasks primarily load on different memory
systems,5 although this hypothesis is far from resolved.

Of these four tasks, the most widely studied is the RB task, followed in order by the II, the
prototype distortion, and the unstructured tasks. As described below, much evidence
suggests that learning in RB tasks depends on an explicit, hypothesis-testing system that is
mediated by a broad neural network that includes the prefrontal cortex, anterior cingulate,
head of the caudate nucleus, and the hippocampus and other medial temporal lobe structures.
In contrast, the evidence suggests that II tasks recruit a procedural learning system that
depends heavily on the striatum and on dopamine-mediated reinforcement learning at
cortical-striatal synapses. Less is known about prototype distortion and unstructured tasks,
but several studies suggest that the most popular prototype distortion task recruits the
perceptual representation memory system.6,7

The evidence for multiple systems came primarily from two types of studies – behavioral
experiments that reported empirical dissociations between different category-learning tasks
and cognitive neuroscience studies that used either neuroimaging or else studied various
neuropsychological patient groups. The dissociation studies manipulated variables that
affected the structure of the categories, the placement, timing, and richness of the feedback,
the response characteristics associated with the task, the number of categories and decision
bounds, and the working memory load, to name a few. For example, delaying feedback by a
few seconds,8,9 switching the location of the response keys,10,11 or informing participants of
the category label before the stimulus rather than after the response12 all interfere with
performance in II tasks much more than in RB tasks. In contrast, adding a secondary (dual)
task13,14 or reducing the time available to process the feedback15 interferes with
performance in RB tasks much more than in II tasks. No single-system account of all these
dissociations has been proposed.

Neuroimaging and neuropsychological patient studies helped map out the neural circuits
active in these different tasks. Neuroimaging studies of all four tasks have been reported,
and a variety of patient groups have been tested, including patients with Parkinson’s disease,
Huntington’s disease, frontal-lobe damage, medial temporal lobe amnesia, and
schizophrenia.16 Perhaps the most consistent result from all of this work is the finding that
almost all forms of category learning depend, to some extent, on the striatum (although
different tasks may depend on different striatal subregions).

One theoretical reason why the striatum is seen as a plausible site for initial category
learning is that the conditions under which cortical-striatal synapses are strengthened and
weakened closely match the conditions for reinforcement learning17–19 with dopamine
serving as the reinforcement training signal. In accordance with this observation,
Parkinson’s patients, who have reduced brain dopamine levels, are impaired in a wide
variety of category learning tasks.2,20,21 In addition, II category learning, which is thought
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to rely primarily on reinforcement learning at cortical-striatal synapses,1 is disrupted by
feedback delays just as predicted by reinforcement learning.8,9 For a thorough review of the
evidence implicating the striatum in category learning see Ashby and Ennis22 or Seger23.

Although many cognitive theories of categorization have been proposed,3 only a few
theories have been developed in enough neurobiological detail to make predictions in
cognitive neuroscience experiments. The COVIS theory of category learning assumes
separate explicit and procedural-learning categorization systems that compete for access to
response production.1,24 The explicit system selects and tests simple verbalizable
hypotheses about category membership. The procedural system gradually associates
categorization responses with regions of perceptual space via reinforcement learning.
COVIS assumes that RB categorization is mediated by a broad neural network that includes
the prefrontal cortex, anterior cingulate, head of the caudate nucleus, and the hippocampus.
The network that includes the prefrontal cortex, anterior cingulate, and head of the caudate
nucleus is assumed to select, test, and switch among alternative hypotheses using working
memory and executive attention,25 whereas the primary role of the hippocampus in COVIS
is to mediate the long-term retention of RB learning.26 To perform well in RB tasks,
participants must remember which rules they have already tested and rejected, in order to
avoid revisiting these failed rules again. Thus, COVIS predicts normal learning by medial
temporal lobe amnesiacs in simple RB tasks where the correct rule can be discovered before
the list of rejected hypotheses is lost from working memory. In more difficult RB tasks, the
search for the correct rule will exceed working memory capacity, so COVIS predicts that in
these cases medial temporal lobe amnesiacs will be impaired. Much evidence supports the
former prediction.27,28 The latter prediction has not been as rigorously tested, although
several studies have reported normal performance by amnesiacs on the first 50 trials of a
difficult task, but impaired performance later on.2,29

The key structures in the COVIS procedural-learning system are the putamen and the
premotor cortex (i.e., the supplementary motor area). Early versions of COVIS assumed that
the striatal regions most critical to the procedural system were the body and tail of the
caudate nucleus.1 More recent evidence however, suggests that the procedural system has a
strong motor association,10,11 which has caused the focus to switch to the putamen. The key
site of learning in this model is at cortical-striatal synapses, and this synaptic plasticity is
presumed to be facilitated by a dopamine-mediated reinforcement training signal from the
substantia nigra pars compacta.

Interactions among the Systems
Once the multiple systems hypothesis is accepted, a next obvious question is how the
various systems interact. The available evidence suggests competition. Less clear is whether
this competition is at the learning or output stages.

Behavioral Studies
An ideal task for studying interactions between two systems is one in which each system is
active on different trials and the experimenter is reasonably confident of which responses are
controlled by each system. Two studies have attempted to achieve these goals.30,31 Both
studies used a hybrid category-learning task in which perfect accuracy required applying an
RB strategy on some trials and an II strategy on the others. In the Ashby and Crossley30

study sine-wave gratings with an orientation of greater than 50 degrees required an RB
strategy, whereas gratings with a shallower orientation required an II strategy. In the
Erickson experiments,31 three cues signaled participants which strategy to apply. First, the
stimuli requiring an II strategy were perceptually distinct from the stimuli requiring an RB
strategy. Second, stimuli requiring an II strategy were presented in one color, whereas
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stimuli requiring an RB strategy were presented in a different color. Third, the II categories
required different responses from the RB categories (i.e., A and B versus C and D).

Participants in the Erickson31 study successfully switched between RB and II strategies on a
trial-by-trial basis. In contrast, participants in the Ashby and Crossley30 experiments did not
switch. Instead, almost all of these participants used either a single RB or II strategy on all
trials. By far, the most common strategy was RB.

If the two systems can operate independently then people should have performed well in
both tasks. Taken together, these data suggest that switching between systems does not
occur automatically. The prevalence of RB strategies in the Ashby and Crossley30

experiments suggests that use of an RB strategy might limit access to the procedural system,
either because the procedural system is prevented from learning or because it is denied
access to motor output systems. The Erickson31 results however, suggest that this inhibition
can be overcome if enough cues are provided to signal the participant which system should
be used on each trial.

Cognitive Neuroscience Studies
A number of neuroimaging studies have reported negative correlations between medial
temporal lobe and striatal activation that are consistent with a competitive relationship
between declarative and procedural memory systems during category learning.32–37 Similar
results have been reported within the more general memory-systems literature.38–40 In
addition, a number of animal lesion studies have reported that medial temporal lobe lesions
can improve performance in striatal-dependent habit-learning tasks, and conversely that
striatal lesions can improve performance in medial temporal lobe-dependent spatial learning
tasks.41–43

All data reviewed so far suggest that the use of declarative memory either inhibits
procedural learning, or denies access of the procedural-learning system to control of the
response. Although this issue is far from resolved, some results support the latter of these
two hypotheses – that is, that the inhibition is at the output stage, and that the use of one
system does not necessarily inhibit learning in the other. First, Packard and McGaugh
reported that animals displaying hippocampal-dependent (place learning) behavior
immediately exhibited behavior that showed prior striatal-dependent (response) learning
following inactivation of the hippocampus.44 Similarly, animals displaying striatal-
dependent behavior immediately exhibited hippocampal-dependent behavior following
inactivation of the striatum. Second, using fMRI, Foerde, Knowlton, and Poldrack reported
that the introduction of a secondary task shifted the brain region that correlated with learning
from the hippocampus to the striatum, but that the overall level of striatal activation was
equal in the two conditions.45 Furthermore, Foerde, Poldrack, and Knowlton reported
evidence that this striatal activation had a behavioral effect.46 In particular, they showed that
a dual task that impaired learning in declarative memory systems in probabilistic
classification did not prevent implicit learning of the correct cue–response associations.
These results are consistent with the hypothesis that the use of strategies that depend on
declarative memory systems does not prevent simultaneous striatal-mediated procedural
learning, but it does restrict access of that procedural learning to motor output systems.

Although these cognitive neuroscience results are consistent with the hypothesis that there is
inhibition between declarative and procedural memory systems during category learning, it
is important to note that they do not necessarily imply that this inhibition is between the
COVIS explicit and procedural learning systems. For example, another possibility is that the
declarative memory system tapped in these (human) studies may have been episodic
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memory-based explicit memorization, rather than working memory-based hypothesis-
testing.

A Tentative Theory
What brain mechanisms could be mediating this type of output inhibition? Ashby and
Crossley tentatively proposed that frontal cortex and the subthalamic nucleus might control
system interactions via the hyperdirect pathway through the basal ganglia.30 The hyperdirect
pathway begins with direct excitatory projections from frontal cortex to the subthalamic
nucleus.47,48 Some evidence suggests that the key cortical input may come from the pre-
supplementary motor area.49 The subthalamic nucleus then sends excitatory projections
directly to the internal segment of the globus pallidus (GPi).50,51 This extra excitatory input
to the GPi tends to offset inhibitory input from the striatum, making it more difficult for
striatal activity to affect cortex. Hence, the hyperdirect pathway could permit (by reducing
subthalamic activity), or prevent (by increasing subthalamic activity) signals coming from
the striatum from influencing cortex.

Note that this hypothesis accounts for asymmetries in the Ashby and Crossley30 data.
Specifically, Ashby and Crossley found that the use of an explicit strategy prevented access
to procedural knowledge, but they failed to find evidence of the opposite influence. The
hyperdirect pathway provides a mechanism via which the prefrontal cortex can inhibit a
response selected by the striatum, but it does not allow the striatum to inhibit a response
selected by the prefrontal cortex. Furthermore, because frontal cortex controls the excitatory
input to the hyperdirect pathway, this hypothesis could also account for the success of
Erickson’s31 participants. The extra cues present in the Erickson study could be sufficient to
inform participants when to turn this signal on and off. In addition, note that this model is
consistent with the neuroscience data suggesting that the inhibition between systems is at the
output stage. The hyperdirect pathway has no direct effect on processing within the striatum,
which has frequently been identified as a key site of procedural learning. Thus, this
hyperdirect pathway hypothesis predicts that when declarative memory systems control
behavior, procedural learning and memory operates normally but is blocked from (cortical)
motor output systems.

Evidence supporting this model comes from studies using the stop-signal task. On a typical
stop-signal trial, participants initiate a motor response as quickly as possible when a cue is
presented. On some trials, however, a second cue is presented soon after the first and in
these cases participants are required to inhibit their response. A variety of evidence
implicates the subthalamic nucleus in this task.52–54 A popular model is that the second cue
generates a “stop signal” in cortex that is rapidly transmitted to the GPi via the hyperdirect
pathway, where it cancels out the “go signal” being sent through the striatum. When
declarative memory is controlling behavior, Ashby and Crossley proposed that a similar stop
signal may be used to inhibit a potentially competing response signal generated by the
procedural memory system.30

This hypothesis might also account for results from a recent study that examined category
learning in older adults, and another recent study of category learning in frontal lesion
patients.55,56 Maddox et al. found an age-related deficit in both RB and II category learning.
55 When the analyses focused only on participants who used the task appropriate strategy,
however, the age-related RB deficit disappeared whereas the II deficit remained. For this
group of individuals, the II deficit was due to less consistent application of the task
appropriate strategy by older adults, and over the course of learning these older adults
shifted from an explicit hypothesis-testing strategy to the task-appropriate strategy later in
learning. These data support a two-component model of II category learning that includes a
striatal component that mediates procedural learning, and a frontal-cortical component
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(possibly via the hyperdirect pathway) that mediates the transition from hypothesis-testing to
procedural-learning strategies.

Schnyer et al. also found RB and II deficits for frontal lesion patients.56 A more careful
lesion analysis pointed to damage in a fairly circumscribed region of ventral medial
prefrontal cortex as common to the impaired group of patients, whereas those patients
without ventral medial PFC damage mostly performed normally. These results provide
further evidence that the ventral medial PFC is critically important for the ability to monitor
and integrate feedback in order to select, maintain, and switch strategies in the interest of
obtaining optimal performance. Taken together, these data implicate frontal brain regions in
both RB and II category learning.

One intriguing possibility is that the primary role of the ventral medial PFC in II tasks may
be to control the hyperdirect pathway. According to this account, damage to this PFC region
would disrupt the normal transition from RB to II strategies. Schnyer et al. reported that
ventromedial PFC patients were impaired in II tasks because they were more likely to use
explicit rules. This result suggests that the default state of the hyperdirect projection from
frontal cortex to the subthalamic nucleus may be “on” and that one role of the ventral medial
PFC may be to switch this excitatory projection off. If so, then as Schnyer et al. reported,
damage to the ventral medial PFC would make it more difficult for participants to switch
away from explicit RB strategies. Obviously, much more work is needed to test this
hypothesis.

Categorization versus Category Representation
One question where significant progress has been made in recent years is whether there are
different neural networks for categorization and category representation. Interest in this
question arose with reports of a variety of category-specific agnosias that can result
following lesions to certain areas of visual cortex.57,58 The most widely known of such
deficits, which occur with human faces (i.e., prosopagnosia), are associated with lesions to
the fusiform gyrus in inferotemporal cortex. Subsequently, it was discovered that long
periods of practice with a category cause well-documented changes in how visual cortex
responds to exemplars of that category.59,60 For example, Gauthier, Tarr, Anderson,
Skudlarski, and Gore reported that 7 hours of training with categories of novel 3-
dimensional objects called greebles recruited a greeble-sensitive area in fusiform gyrus.61

Similar results were later reported for other novel categories and other regions of visual
cortex.62,63

These results all seem to suggest that much categorization might be mediated within visual
cortex. Despite these results, however, there is more recent evidence that the primary role of
visual cortex might not be to categorize, but rather to create the visual representation that
other brain areas categorize. Categorization is a behavior that requires the subject to take
some action, and therefore categorization requires linking a percept to an action. There is
good reason to believe that this linkage is not encoded in visual cortex.64 First, several
studies have reported that following categorization training, cells in inferotemporal cortex
showed enhanced sensitivity to diagnostic features compared with features that were
irrelevant to the categorization judgment.65,66 Such changes are consistent with the widely
held view that category learning is often associated with changes in the allocation of
perceptual attention.67 Second and most critical are the studies showing that categorization
training did not make inferotemporal cortex neurons more likely to respond to other stimuli
in the same category, or less likely to respond to stimuli belonging to the contrasting
category.65,68–72 Third, Rolls, Judge, and Sanghera showed that the firing properties of cells
in inferotemporal cortex did not change when the motor responses associated with category
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membership were switched (i.e., from “approach” to “avoid” and vice versa).73 For these
reasons, the best evidence seems to suggest that inferotemporal cortex does not mediate the
learning of new categories. Even so, this visual association area is crucial to the
categorization process because it appears to encode a high-level representation of the visual
stimulus.

Although the standard view has long been that object recognition is mediated primarily by
the ventral visual stream, more recent evidence suggests that the dorsal stream is also
proficient at object recognition.74,75 Inferotemporal cortex projects heavily to the body and
tail of the caudate nucleus, whereas much of parietal cortex projects to the putamen. Thus,
most of the striatum has access to high-level object representations.

Automaticity
A typical adult makes hundreds of categorization judgments every day. Almost all of these
are automatic. When we sit in a chair or pick up a book we are making an automatic
categorization judgment. Although adults sometimes make categorization decisions that are
not automatic, categorization decisions based on newly acquired knowledge are probably far
less common than categorization decisions that are made automatically. Despite this
imbalance, initial category learning has been investigated much more extensively than
categorization automaticity. There are both practical and theoretical reasons that the
published literature has focused on initial learning.

One practical reason is that studies of automaticity require more time, patience, and
resources than studies of initial learning (where meaningful data are available from the first
trial). For example, to study the neural basis of automaticity Muhammad, Wallis, and Miller
had monkeys practice the same RB classification task almost daily for more than a year.76

A theoretical challenge when studying automaticity is to identify a point in training at which
the categorization behavior has become automatic. This is a difficult problem because many
different criteria for identifying automaticity have been proposed and none of these are
widely accepted as definitive. Perhaps the most influential criteria were proposed by
Schneider and Shiffrin.77–79 For example, they proposed that a behavior should be
considered automatic if it can be executed successfully while the participant is
simultaneously engaged in some other secondary task. Another criterion they popularized is
that a behavior should be considered automatic if it becomes behaviorally inflexible. For
example, if switching the location of the response keys interferes with the expression of the
behavior, then it should be considered automatic. These criteria are especially problematic if
applied to categorization. For example, as mentioned above, several studies have reported
that a dual task requiring working memory massively interferes with initial RB category
learning but not with II category learning.13,14,80 Similarly, several studies have reported
that switching the locations of the response keys interferes with initial II performance but
not with initial RB performance.10,11,81,82 Therefore, by the Shiffrin and Schneider criteria
II categorization is automatic after the first training session. Such a conclusion is
incompatible with intuitive notions of automaticity, because accuracy in II tasks requires
several thousand trials to asymptote. 83

Behavioral Results
As humans gain practice in virtually any skill, they naturally become faster and more
accurate. In many laboratory studies of automaticity, asymptotic accuracy is perfect, and as
a result the primary focus is on response time (RT). The most widely replicated and best
known empirical result in this area is that mean RT decreases as a power function of the
amount of practice. Among many other examples, a power-function speedup has been
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reported for skills as diverse as cigar rolling and proving geometry theorems.84,85 Not
surprisingly, Nosofsky and Palmeri reported that RT improvements in an II task that used
categories of color patches also followed the power law.86

A more subtle question is whether there are multiple systems for automatic categorization in
the same way that there are multiple systems for initial category learning. In the only known
study to address this question Helie, Waldschmidt, and Ashby compared the performance of
participants who each had more than 11,000 trials of training either with one of two RB
tasks (one simple, one complex) or with an II task.83 Qualitative differences were evident in
the behavioral data up through the third of 20+ experimental sessions, but after session 4 or
so, there were no more behavioral differences among any of the conditions. As mentioned
above, during initial learning, a dual task interferes with RB learning but not II learning,
whereas switching the response keys induces the opposite pattern of results. Helie et al.
however, reported that after 20+ sessions of practice both of these differences disappear –
that is, RB and II tasks both show no dual-task interference and they both show a response-
key switch interference.78 Thus, although much more work is needed on this question, at
present there is no behavioral evidence for separate RB and II automatic categorization
systems. Instead, the behavioral data suggest two possibilities. One is that after extensive
training, RB and II categorization are both mediated by the same procedural system that
mediates initial II category learning. A second possibility is that automatic performance in
the two tasks is mediated by some new, but common neural network.

Cognitive Neuroscience Results
Interest in the neural basis of automaticity has a long history, dating back at least to
Sherrington (1906), who argued that long periods of practice gradually make skills reflexive.
87 These ideas led to the theory that dominated the 20th century: Novel behaviors require
attention and flexible thinking and therefore are dependent on cortex, whereas automatic
behaviors require neither of these and so are not mediated primarily by cortex. Instead, it has
long been assumed that automatic behaviors are primarily mediated by subcortical
structures. For example, in his classic and influential article entitled “In search of the
engram,” Lashley (1950) wrote that “it has been widely held that although memory traces
are at first formed in the cerebral cortex, they are finally reduced or transferred by long
practice to subcortical levels” (p. 466).88

Striatum—As mentioned above, perhaps the most ubiquitous cognitive neuroscience
finding about category learning is the important role that the striatum seems to play.22,23

Thus, a natural question to ask is whether the striatum also participates in automatic
categorization. Based on their different inputs and outputs, the striatum is often subdivided
into associative and sensorimotor regions. Roughly speaking, the associative striatum, which
includes all of the caudate nucleus and the anterior putamen, receives input from sensory
association areas in the temporal lobes and from prefrontal cortex and sends projections
primarily to prefrontal cortex (i.e., via the medial dorsal and ventral anterior thalamic
nuclei). By contrast, the sensorimotor striatum, which includes all of the putamen except its
most anterior portion, receives input from the parietal lobes and from motor and premotor
cortex and sends projections primarily to premotor and motor cortex (i.e., via the ventral
lateral thalamic nucleus).

More recent evidence suggests that associative and sensorimotor regions of the striatum may
play different roles in learning and automaticity.89 Several studies have reported that the
associative striatum is active during initial skill learning and that its activity decreases with
extended training.90–93 In contrast, the sensorimotor striatum often shows the opposite
pattern – that is, evidence suggests that the sensorimotor striatum might be needed for the
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performance of automatic behaviors and/or for the transition from initial learning to
automaticity.91,94,95 Largely because of these results, there have been several proposals that
the development of automaticity involves a gradual transfer of control from the associative
to the sensorimotor striatum,96–98 although the exact details of how such a transfer is
mediated have not been described.

It is also important to note that some results seem inconsistent with the hypothesis that the
sensorimotor striatum mediates automatic responding. First, using fMRI, Helie, Roeder, and
Ashby examined changes in RB categorization at four separate time points as participants
practiced on the same category structures for more than 10,000 trials.99 Striatal activation
increased with practice, but the correlation between striatal activation and behavioral
performance decreased to zero by the end of training. Thus, this study found no evidence
that the striatum contributed to automatic RB categorization. Note that this result also
suggests that automatic RB categorization is not mediated by the same procedural system
that is critical for early II learning, which as mentioned earlier, is thought to depend heavily
on the striatum.

Second, temporary inactivations of sensorimotor regions of the internal segment of the
globus pallidus (via injections of the GABA agonist muscimol) should prevent the
sensorimotor striatum from influencing cortex because this area is a relay between the
striatum and thalamus. Thus, if the striatum mediates the expression of automatic behaviors,
then such inactivations should disrupt highly practiced actions. In contrast to this prediction,
however, Desmurget and Turner reported that such inactivations did not prevent monkeys
from fluidly executing highly practiced motor sequences.100 As a result, they concluded that
circuits through the sensorimotor striatum do not contribute “to motor sequencing or the
storage of overlearned serial skills” (p. 7685). Third, several studies have shown that
disconnecting the bird homologue of the basal ganglia completely blocks new song learning,
but has little effect on the expression of well-learned songs.101

The Role of Dopamine—As mentioned earlier, the evidence is good that dopamine plays
an important role in early category learning. Even so, other evidence suggests it plays a
diminishing role in the expression of automatic behaviors.102 For example, some human
subjects with Parkinson’s disease are able to emit an automatic motor response when
presented with a familiar visual cue (e.g., kicking a ball), despite difficulties in initiating
novel voluntary movements.103 As another example, blockade of dopamine D1 receptors in
rats strongly disrupts a simple Pavlovian approach response to a sensory cue during early
stages of training, but has little or no disruptive effect if extended training is given before the
dopamine antagonist is administered.104,105

Another important question is whether the role of dopamine is the same in the striatum and
cortex. Both regions receive prominent dopamine projections from midbrain dopamine cells.
As mentioned above, striatal dopamine is widely thought to serve as the training signal for
reinforcement learning at cortical-striatal synapses. This raises the obvious question of the
role that cortex might play in reinforcement-mediated category learning. A necessary feature
of any reinforcement training signal is high temporal resolution. If the first response is
correct then dopamine must be released into the relevant synapses quickly, before the
critical traces disappear. But after the correct synapses have been strengthened, it is also
essential that excess dopamine be quickly cleared from the synapse. If it is not, and the next
response is an error, then the residual dopamine will strengthen inappropriate synapses –
namely, those responsible for producing the incorrect response. This would undo the
beneficial learning that occurred following correct responses, and thereby prevent skill
learning.

Ashby and Maddox Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Dopamine re-uptake is exceptionally fast within the striatum.106 In contrast, in frontal
cortex, because of low concentrations of the dopamine reuptake molecule DAT, it takes
much longer to clear dopamine from synapses.107–109 For example, the delivery of a single
food pellet to a hungry rat elevates dopamine levels in prefrontal cortex for approximately
30 minutes.110 Ashby, Ennis, and Spiering argued that this poor temporal resolution
effectively rules out dopamine as a trial-by-trial reinforcement training signal in cortex.111

Instead, although dopamine may facilitate cortical LTP, there is much evidence that synaptic
plasticity at cortical-cortical synapses follows classical two-factor Hebbian learning rules.112

Transfer to Cortex—Many sensory association areas of cortex project directly into
premotor cortex. Ashby et al. proposed that these cortical networks, by themselves, are
incapable of skill learning because of the absence of reinforcement learning at cortical-
cortical synapses.111 Instead, they proposed that via reinforcement learning, a subcortical
path through the striatum learns to activate the correct post-synaptic target in premotor
cortex, which allows the appropriate cortical-cortical synapses in the premotor cortex to then
be strengthened via Hebbian learning (because the product of pre- and post-synaptic
activations will be greatest at the correct synapse). In this way, control is gradually passed
from the subcortical path through the basal ganglia to the faster cortical-cortical path. Thus,
according to this model, the development of automaticity is a gradual process via which
control is passed from subcortical pathways through the basal ganglia to purely cortical
networks that connect sensory association areas of cortex with premotor cortex. In other
words, rather than to serve as a long-term store of procedural knowledge, a primary function
of the basal ganglia may be to train cortical-cortical representations that mediate
automaticity. Note that this theory accounts for results showing that automatic behaviors are
striatal- and dopamine-independent.

Learning Characteristics of Each System
As mentioned earlier, the overriding research goal in the first generation was to establish
that multiple systems exist, rather than to learn as much as possible about any one system.
More recently, some studies have focused more exclusively on a single system, with the
goal of developing more detailed models of each system. This section reviews some of this
work.

Separate Stages of Explicit and Procedural Category Learning
The category shift literature suggests that RB category learning includes two separate stages:
a stimulus-to-label stage that associates stimuli and category labels, and a label-to-response
stage that associates category labels and responses.113–117 In a recent study, Maddox et al.
reported evidence that II classification is also mediated by two learning stages.81 After
training participants in an II task, Maddox et al. either changed the mappings between
stimuli and category labels or between the category labels and the response locations. Both
manipulations change the mappings between stimuli and responses, so if there is a single
stage of learning then both manipulations should cause similar deficits. In contrast to this
prediction, breaking the association between stimulus and category label caused more
interference and led to greater recovery than breaking the association between category label
and response location.

COVIS1 postulates no learning after the cortical-striatal synapses, so it predicts no
qualitative performance difference between the stimulus-to-label and label-to-response
conditions. Both manipulations should require cortical-striatal relearning. For this reason,
COVIS, in its current form, is not consistent with the Maddox et al.81 results. COVIS might
be extended, however, to include a second stage of learning that associates a category label
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with a specific response location. Logically, such learning must be downstream from the site
of category label learning, which suggests that plausible sites of response learning could be
at synapses in the internal segment of the globus pallidus, the ventral anterior or ventral
lateral nuclei of the thalamus, or within premotor cortex. Each of these brain regions has
been implicated in procedural learning and thus represents plausible loci of such learning.92

Switching in the Explicit System
RB category learning depends heavily on executive function. For example, one classic
neuropsychological assessment of executive function is the Wisconsin Card Sorting Test,
which requires participants to learn a series of RB categorization tasks.118 The recent
literature on the cognitive neuroscience of executive function is immense and a review is
well beyond the scope of this article. Interested readers should consult Banich119 or Jurado
and Rosselli120. This section touches on some recent findings that are relevant to rule
switching in the explicit system.

Theoretical accounts of RB category learning postulate a number of separate processes. For
example, COVIS assumes separate rule selection, maintenance, and switching operations.1
Neuroimaging and neuropsychological results have provided evidence for multiple
processes in RB category learning,21,121–123 and recent work has begun focusing on these
sub-processes in more detail. For example, Chiu and Yantis reported fMRI evidence that the
mechanism that mediates rule switching is the same as the mechanism used in other types of
attentional switching.124

Neuropsychological and pharmacological studies have long implicated dopamine in rule
switching,125–128 but recent work also suggests a role for norepinephrine.129,130 For
example, pharmacological manipulations of prefrontal norepinephrine alter rule switching
performance in rats.131,132 Although the mechanism by which norepinephrine supports rule
switching is unknown, one possibility is that a lack of positive reinforcement following the
rule switch induces exploratory behaviors (e.g., switching away from the present rule) that
depend on the ceruleo-cortical norepinephrine system.133

A growing body of research suggests that motivational incentives can also influence
executive control processes and thus rule switching in the explicit system. In a recent
behavioral study, Maddox, Filoteo, Glass and Markman showed that the global and local
motivational incentives in a modified Wisconsin Card Sorting Task systematically
accentuated rule switching when they matched (i.e., when both the global and local
incentives emphasized either maximizing gains or minimizing losses) and systematically
attenuated rule switching when there was a mismatch (i.e., when the global incentive was to
maximize gains and the local incentive was to minimize losses or vice versa).134 In a recent
fMRI study, Savine and Braver examined the effects of reward incentives on performance
and neural activity in a cued task-switching paradigm.135 They found smaller task-switching
costs on incentive trials relative to no incentive trials. In addition, they found that activation
in cognitive control networks tracked fluctuations in incentive value.

Positive and Negative Feedback
Feedback is known to play a different role in RB and II learning. A number of recent studies
have explored these differences in detail.

A long history of research has shown that in RB category learning, providing feedback about
errors allows faster learning than providing feedback about correct responses.136,137 Two
studies have investigated similar questions in II tasks. First, Ashby and O’Brien reported
that II category learning requires both types of feedback.138 Participants in this study who
received feedback either only about (some) correct responses or only about (some) errors
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generally used explicit, RB strategies. Second, using a semi-supervised training paradigm in
which participants received feedback about both correct responses and errors, but only on
some trials, Vandist, De Schryver, and Rosseel reported that they found no evidence of any
II learning on no-feedback trials.139

Plasticity at cortical-striatal synapses is known to be bi-directional,140,141 and thus current
theory would predict that the relevant cortical-striatal synapses should be modified
following feedback after both correct and incorrect responses, but should not change much
on trials when no feedback is given (i.e., because striatal dopamine levels should not
fluctuate much on no-feedback trials). This latter prediction is consistent with the Vandist et
al.139 results.

The COVIS procedural-learning system included only the direct pathway through the basal
ganglia1. In this pathway synapses are strengthened only if the following three conditions
are present: (1) strong presynaptic activation, (2) strong postsynaptic activation (i.e., strong
enough to activate NMDA receptors), and (3) dopamine levels above baseline (which occurs
following feedback that indicates a correct response). Thus, on positive feedback (correct
response) trials, COVIS assumes that synapses for which all three conditions are met will be
strengthened, synapses for which the NMDA activation threshold is not met will be
weakened, and synapses for which there is no activation will not change. On negative
feedback (error response) trials, on the other hand, COVIS assumes that synapses either will
be weakened or will remain unchanged. Thus, there is an asymmetry in the COVIS
procedural-learning system which predicts that positive feedback should be more effective
than negative feedback (because there is a greater dynamic range for increases in dopamine
levels in the striatum than for decreases).

Another theoretical proposal, which more evenly balances the effects of positive and
negative feedback, is that the direct pathway mediates GO learning, whereas the indirect
pathway mediates NO-GO learning.142 According to this account, the direct pathway
primarily uses positive feedback to learn which response to make when a stimulus is
presented, while the indirect pathway primarily uses negative feedback to learn which
response not to make. Although the indirect pathway has not been formally incorporated
into COVIS, it does appear that an augmentation of this sort would allow COVIS to predict
learning in positive-only or negative-only conditions.

COVIS assumes that learning should occur in the positive-only condition, and a version that
incorporates the indirect pathway would predict learning in the positive- and negative-only
conditions. Contrary to both versions of the model, Ashby and O’Brien found that
participants in the positive-only and negative-only feedback conditions generally used
explicit, RB strategies. One limitation of these studies, and an area for future research, is that
the primary effect of changing the feedback in any way may be to change the system that
people learn to rely on in the task. In fact, this may be more important than the change in the
amount of learning that occurs within each system. For example, in the Ashby and O’Brien
study,138 participants using a one-dimensional rule could achieve an accuracy of 78%,
which is only 8% below the accuracy rate of the optimal II strategy. This 8% difference was
large enough to induce full-feedback control participants to adopt an II strategy, but it is
difficult to rule out the possibility that removing all positive feedback or all negative
feedback led participants to rely more heavily on explicit rules, effectively masking learning
effects on the procedural system. Future work should examine category structures for which
the difference in accuracy between the optimal II and most accurate one-dimensional rule is
larger than 8%.
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Future Directions
The era of work on second generation problems is just beginning and many important topics
await systematic investigation. First, future work needs to address the nature of retention and
generalization processes in each system. It will be important to understand how categorical
knowledge is retained over long periods of time, how it is generalized, and how using that
knowledge in one way might interfere with or enhance other uses of the same information.
Second, desirable difficulties occur when one training protocol leads to poor learning but
better long-term retention than other protocols.143 This phenomenon has been observed in
some motor and verbal learning paradigms and should be studied in categorization. Third,
more developmental work is needed to determine how the different categorization systems
develop and interact in childhood and in normal aging.55 Fourth, more work is needed to
understand the psychopathological implications of multiple systems. One exciting avenue
for future research will be to apply a neuro-rehabilitation approach to category learning in
which a normally functioning system is used to “bootstrap” learning or performance in a
poorly functioning system. These are just a few of the many exciting avenues of research
that will be pursued in the coming years.

Conclusions
Many categorization researchers now accept the large and growing body of behavioral,
neuropsychological, and neuroimaging evidence that humans have multiple category
learning systems that are functionally distinct at both the neural and cognitive levels. Thus,
over the past few years the emphasis has begun to shift to the study of second generation
problems – that is, questions that begin with the assumption that humans have multiple
systems. This article reviewed much of the existing second generation research.
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