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Deep learning networks have been trained to recognize speech,
caption photographs, and translate text between languages at
high levels of performance. Although applications of deep learn-
ing networks to real-world problems have become ubiquitous, our
understanding of why they are so effective is lacking. These empirical
results should not be possible according to sample complexity in
statistics and nonconvex optimization theory. However, paradoxes
in the training and effectiveness of deep learning networks are
being investigated and insights are being found in the geometry of
high-dimensional spaces. A mathematical theory of deep learning
would illuminate how they function, allow us to assess the strengths
and weaknesses of different network architectures, and lead to
major improvements. Deep learning has provided natural ways for
humans to communicate with digital devices and is foundational for
building artificial general intelligence. Deep learningwas inspired by
the architecture of the cerebral cortex and insights into autonomy
and general intelligence may be found in other brain regions that
are essential for planning and survival, but major breakthroughs will
be needed to achieve these goals.

deep learning | artificial intelligence | neural networks

In 1884, Edwin Abbott wrote Flatland: A Romance of Many
Dimensions (1) (Fig. 1). This book was written as a satire on

Victorian society, but it has endured because of its exploration of
how dimensionality can change our intuitions about space. Flat-
land was a 2-dimensional (2D) world inhabited by geometrical
creatures. The mathematics of 2 dimensions was fully understood
by these creatures, with circles being more perfect than triangles.
In it a gentleman square has a dream about a sphere and wakes up
to the possibility that his universe might be much larger than he or
anyone in Flatland could imagine. He was not able to convince
anyone that this was possible and in the end he was imprisoned.
We can easily imagine adding another spatial dimension when

going from a 1-dimensional to a 2D world and from a 2D to a
3-dimensional (3D) world. Lines can intersect themselves in 2 di-
mensions and sheets can fold back onto themselves in 3 dimen-
sions, but imagining how a 3D object can fold back on itself in a
4-dimensional space is a stretch that was achieved by Charles Howard
Hinton in the 19th century (https://en.wikipedia.org/wiki/Charles_
Howard_Hinton). What are the properties of spaces having even
higher dimensions? What is it like to live in a space with 100 dimen-
sions, or a million dimensions, or a space like our brain that has a
million billion dimensions (the number of synapses between neurons)?
The first Neural Information Processing Systems (NeurIPS)

Conference and Workshop took place at the Denver Tech Center
in 1987 (Fig. 2). The 600 attendees were from a wide range of
disciplines, including physics, neuroscience, psychology, statistics,
electrical engineering, computer science, computer vision, speech
recognition, and robotics, but they all had something in common:
They all worked on intractably difficult problems that were not
easily solved with traditional methods and they tended to be out-
liers in their home disciplines. In retrospect, 33 y later, these misfits
were pushing the frontiers of their fields into high-dimensional
spaces populated by big datasets, the world we are living in to-
day. As the president of the foundation that organizes the annual

NeurIPS conferences, I oversaw the remarkable evolution of a
community that created modern machine learning. This confer-
ence has grown steadily and in 2019 attracted over 14,000 par-
ticipants. Many intractable problems eventually became tractable,
and today machine learning serves as a foundation for contem-
porary artificial intelligence (AI).
The early goals of machine learning were more modest than

those of AI. Rather than aiming directly at general intelligence,
machine learning started by attacking practical problems in
perception, language, motor control, prediction, and inference
using learning from data as the primary tool. In contrast, early
attempts in AI were characterized by low-dimensional algorithms
that were handcrafted. However, this approach only worked for
well-controlled environments. For example, in blocks world all
objects were rectangular solids, identically painted and in an envi-
ronment with fixed lighting. These algorithms did not scale up to
vision in the real world, where objects have complex shapes, a wide
range of reflectances, and lighting conditions are uncontrolled. The
real world is high-dimensional and there may not be any low-
dimensional model that can be fit to it (2). Similar problems were
encountered with early models of natural languages based on
symbols and syntax, which ignored the complexities of semantics
(3). Practical natural language applications became possible once
the complexity of deep learning language models approached the
complexity of the real world. Models of natural language with
millions of parameters and trained with millions of labeled exam-
ples are now used routinely. Even larger deep learning language
networks are in production today, providing services to millions of
users online, less than a decade since they were introduced.

Origins of Deep Learning
I have written a book, The Deep Learning Revolution: Artificial
Intelligence Meets Human Intelligence (4), which tells the story of
how deep learning came about. Deep learning was inspired by
the massively parallel architecture found in brains and its origins
can be traced to Frank Rosenblatt’s perceptron (5) in the 1950s
that was based on a simplified model of a single neuron in-
troduced by McCulloch and Pitts (6). The perceptron performed
pattern recognition and learned to classify labeled examples (Fig.
3). Rosenblatt proved a theorem that if there was a set of pa-
rameters that could classify new inputs correctly, and there were
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enough examples, his learning algorithm was guaranteed to find it.
The learning algorithm used labeled data to make small changes to
parameters, which were the weights on the inputs to a binary
threshold unit, implementing gradient descent. This simple para-
digm is at the core of much larger and more sophisticated
neural network architectures today, but the jump from perceptrons
to deep learning was not a smooth one. There are lessons to be
learned from how this happened.
The perceptron learning algorithm required computing with real

numbers, which digital computers performed inefficiently in the
1950s. Rosenblatt received a grant for the equivalent today of $1
million from the Office of Naval Research to build a large analog
computer that could perform the weight updates in parallel using
banks of motor-driven potentiometers representing variable weights
(Fig. 3). The great expectations in the press (Fig. 3) were dashed by
Minsky and Papert (7), who showed in their book Perceptrons that a
perceptron can only represent categories that are linearly separable
in weight space. Although at the end of their book Minsky and
Papert considered the prospect of generalizing single- to multiple-
layer perceptrons, one layer feeding into the next, they doubted
there would ever be a way to train these more powerful multilayer
perceptrons. Unfortunately, many took this doubt to be definitive,
and the field was abandoned until a new generation of neural net-
work researchers took a fresh look at the problem in the 1980s.
The computational power available for research in the 1960s

was puny compared to what we have today; this favored pro-
gramming rather than learning, and early progress with writing
programs to solve toy problems looked encouraging. By the 1970s,
learning had fallen out of favor, but by the 1980s digital computers
had increased in speed, making it possible to simulate modestly
sized neural networks. During the ensuing neural network revival
in the 1980s, Geoffrey Hinton and I introduced a learning algo-
rithm for Boltzmann machines proving that contrary to general
belief it was possible to train multilayer networks (8). The Boltzmann
machine learning algorithm is local and only depends on correlations

between the inputs and outputs of single neurons, a form of Hebbian
plasticity that is found in the cortex (9). Intriguingly, the corre-
lations computed during training must be normalized by cor-
relations that occur without inputs, which we called the sleep state,
to prevent self-referential learning. It is also possible to learn the
joint probability distributions of inputs without labels in an unsu-
pervised learning mode. However, another learning algorithm in-
troduced at around the same time based on the backpropagation of
errors was much more efficient, though at the expense of locality
(10). Both of these learning algorithm use stochastic gradient de-
scent, an optimization technique that incrementally changes the
parameter values to minimize a loss function. Typically this is done
after averaging the gradients for a small batch of training examples.

Lost in Parameter Space
The network models in the 1980s rarely had more than one layer
of hidden units between the inputs and outputs, but they were
already highly overparameterized by the standards of statistical
learning. Empirical studies uncovered a number of paradoxes that
could not be explained at the time. Even though the networks were
tiny by today’s standards, they had orders of magnitude more pa-
rameters than traditional statistical models. According to bounds
from theorems in statistics, generalization should not be possible
with the relatively small training sets that were available. However,

Fig. 1. Cover of the 1884 edition of Flatland: A Romance in Many Dimen-
sions by Edwin A. Abbott (1). Inhabitants were 2D shapes, with their rank in
society determined by the number of sides.

Fig. 2. The Neural Information Processing Systems conference brought to-
gether researchers from many fields of science and engineering. The first
conference was held at the Denver Tech Center in 1987 and has been held
annually since then. The first few meetings were sponsored by the IEEE In-
formation Theory Society.
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even simple methods for regularization, such as weight decay, led
to models with surprisingly good generalization.
Even more surprising, stochastic gradient descent of nonconvex

loss functions was rarely trapped in local minima. There were long
plateaus on the way down when the error hardly changed, followed
by sharp drops. Something about these network models and the
geometry of their high-dimensional parameter spaces allowed them
to navigate efficiently to solutions and achieve good generalization,
contrary to the failures predicted by conventional intuition.
Network models are high-dimensional dynamical systems that

learn how to map input spaces into output spaces. These functions
have special mathematical properties that we are just beginning
to understand. Local minima during learning are rare because in
the high-dimensional parameter space most critical points are
saddle points (11). Another reason why good solutions can be
found so easily by stochastic gradient descent is that, unlike low-
dimensional models where a unique solution is sought, different
networks with good performance converge from random starting
points in parameter space. Because of overparameterization (12),
the degeneracy of solutions changes the nature of the problem
from finding a needle in a haystack to a haystack of needles.
Many questions are left unanswered. Why is it possible to

generalize from so few examples and so many parameters? Why
is stochastic gradient descent so effective at finding useful func-
tions compared to other optimization methods? How large is the
set of all good solutions to a problem? Are good solutions related
to each other in some way? What are the relationships between
architectural features and inductive bias that can improve gener-
alization? The answers to these questions will help us design better
network architectures and more efficient learning algorithms.
What no one knew back in the 1980s was how well neural net-

work learning algorithms would scale with the number of units and
weights in the network. Unlike many AI algorithms that scale com-
binatorially, as deep learning networks expanded in size training
scaled linearly with the number of parameters and performance
continued to improve as more layers were added (13). Furthermore,

the massively parallel architectures of deep learning networks can
be efficiently implemented by multicore chips. The complexity of
learning and inference with fully parallel hardware is O(1). This
means that the time it takes to process an input is independent of
the size of the network. This is a rare conjunction of favorable
computational properties.
When a new class of functions is introduced, it takes genera-

tions to fully explore them. For example, when Joseph Fourier
introduced Fourier series in 1807, he could not prove conver-
gence and their status as functions was questioned. This did not
stop engineers from using Fourier series to solve the heat equation
and apply them to other practical problems. The study of this class
of functions eventually led to deep insights into functional analysis,
a jewel in the crown of mathematics.

The Nature of Deep Learning
The third wave of exploration into neural network architectures,
unfolding today, has greatly expanded beyond its academic ori-
gins, following the first 2 waves spurred by perceptrons in the
1950s and multilayer neural networks in the 1980s. The press has
rebranded deep learning as AI. What deep learning has done for
AI is to ground it in the real world. The real world is analog,
noisy, uncertain, and high-dimensional, which never jived with
the black-and-white world of symbols and rules in traditional AI.
Deep learning provides an interface between these 2 worlds. For
example, natural language processing has traditionally been cast
as a problem in symbol processing. However, end-to-end learning
of language translation in recurrent neural networks extracts both
syntactic and semantic information from sentences. Natural lan-
guage applications often start not with symbols but with word
embeddings in deep learning networks trained to predict the next
word in a sentence (14), which are semantically deep and represent
relationships between words as well as associations. Once regarded
as “just statistics,” deep recurrent networks are high-dimensional
dynamical systems through which information flows much as elec-
trical activity flows through brains.

Fig. 3. Early perceptrons were large-scale analog systems (3). (Left) An analog perceptron computer receiving a visual input. The racks contained poten-
tiometers driven by motors whose resistance was controlled by the perceptron learning algorithm. (Right) Article in the New York Times, July 8, 1958, from a
UPI wire report. The perceptron machine was expected to cost $100,000 on completion in 1959, or around $1 million in today’s dollars; the IBM 704 computer
that cost $2 million in 1958, or $20 million in today’s dollars, could perform 12,000 multiplies per second, which was blazingly fast at the time. The much less
expensive Samsung Galaxy S6 phone, which can perform 34 billion operations per second, is more than a million times faster. Reprinted from ref. 5.
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One of the early tensions in AI research in the 1960s was its
relationship to human intelligence. The engineering goal of AI
was to reproduce the functional capabilities of human intelli-
gence by writing programs based on intuition. I once asked Allen
Newell, a computer scientist from Carnegie Mellon University
and one of the pioneers of AI who attended the seminal Dart-
mouth summer conference in 1956, why AI pioneers had ignored
brains, the substrate of human intelligence. The performance of
brains was the only existence proof that any of the hard problems
in AI could be solved. He told me that he personally had been
open to insights from brain research but there simply had not
been enough known about brains at the time to be of much help.
Over time, the attitude in AI had changed from “not enough is

known” to “brains are not relevant.” This view was commonly
justified by an analogy with aviation: “If you want to build a
flying machine, you would be wasting your time studying birds
that flap their wings or the properties of their feathers.” Quite to
the contrary, the Wright Brothers were keen observers of gliding
birds, which are highly efficient flyers (15). What they learned
from birds was ideas for designing practical airfoils and basic
principles of aerodynamics. Modern jets have even sprouted wing-
lets at the tips of wings, which saves 5% on fuel and look suspi-
ciously like wingtips on eagles (Fig. 4). Much more is now known
about how brains process sensory information, accumulate evi-
dence, make decisions, and plan future actions. Deep learning was
similarly inspired by nature. There is a burgeoning new field in
computer science, called algorithmic biology, which seeks to de-
scribe the wide range of problem-solving strategies used by bi-
ological systems (16). The lesson here is we can learn from nature
general principles and specific solutions to complex problems,
honed by evolution and passed down the chain of life to humans.
There is a stark contrast between the complexity of real neu-

rons and the simplicity of the model neurons in neural network
models. Neurons are themselves complex dynamical systems with
a wide range of internal time scales. Much of the complexity of

real neurons is inherited from cell biology—the need for each
cell to generate its own energy and maintain homeostasis under a
wide range of challenging conditions. However, other features of
neurons are likely to be important for their computational func-
tion, some of which have not yet been exploited in model net-
works. These features include a diversity of cell types, optimized
for specific functions; short-term synaptic plasticity, which can be
either facilitating or depressing on a time scales of seconds; a
cascade of biochemical reactions underlying plasticity inside syn-
apses controlled by the history of inputs that extends from seconds
to hours; sleep states during which a brain goes offline to re-
structure itself; and communication networks that control traffic
between brain areas (17). Synergies between brains and AI may
now be possible that could benefit both biology and engineering.
The neocortex appeared in mammals 200 million y ago. It is a

folded sheet of neurons on the outer surface of the brain, called
the gray matter, which in humans is about 30 cm in diameter and
5 mm thick when flattened. There are about 30 billion cortical
neurons forming 6 layers that are highly interconnected with each
other in a local stereotyped pattern. The cortex greatly expanded
in size relative the central core of the brain during evolution, es-
pecially in humans, where it constitutes 80% of the brain volume.
This expansion suggests that the cortical architecture is scalable—
more is better—unlike most brain areas, which have not expanded
relative to body size. Interestingly, there are many fewer long-
range connections than local connections, which form the white
matter of the cortex, but its volume scales as the 5/4 power of the gray
matter volume and becomes larger than the volume of the gray matter
in large brains (18). Scaling laws for brain structures can provide in-
sights into important computational principles (19). Cortical archi-
tecture including cell types and their connectivity is similar throughout
the cortex, with specialized regions for different cognitive systems. For
example, the visual cortex has evolved specialized circuits for vision,
which have been exploited in convolutional neural networks, the most
successful deep learning architecture. Having evolved a general
purpose learning architecture, the neocortex greatly enhances the
performance of many special-purpose subcortical structures.
Brains have 11 orders of magnitude of spatially structured

computing components (Fig. 5). At the level of synapses, each
cubic millimeter of the cerebral cortex, about the size of a rice
grain, contains a billion synapses. The largest deep learning net-
works today are reaching a billion weights. The cortex has the
equivalent power of hundreds of thousands of deep learning
networks, each specialized for solving specific problems. How are
all these expert networks organized? The levels of investigation
above the network level organize the flow of information between
different cortical areas, a system-level communications problem.
There is much to be learned about how to organize thousands of
specialized networks by studying how the global flow of informa-
tion in the cortex is managed. Long-range connections within the
cortex are sparse because they are expensive, both because of the
energy demand needed to send information over a long distance
and also because they occupy a large volume of space. A switching
network routes information between sensory and motor areas that
can be rapidly reconfigured to meet ongoing cognitive demands (17).
Another major challenge for building the next generation of

AI systems will be memory management for highly heterogeneous
systems of deep learning specialist networks. There is need to
flexibly update these networks without degrading already learned
memories; this is the problem of maintaining stable, lifelong
learning (20). There are ways to minimize memory loss and in-
terference between subsystems. One way is to be selective about
where to store new experiences. This occurs during sleep, when
the cortex enters globally coherent patterns of electrical activity.
Brief oscillatory events, known as sleep spindles, recur thousands
of times during the night and are associated with the consolida-
tion of memories. Spindles are triggered by the replay of recent

Fig. 4. Nature has optimized birds for energy efficiency. (A) The curved
feathers at the wingtips of an eagle boosts energy efficiency during gliding.
(B) Winglets on a commercial jets save fuel by reducing drag from vortices.
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episodes experienced during the day and are parsimoniously in-
tegrated into long-term cortical semantic memory (21, 22).

The Future of Deep Learning
Although the focus today on deep learning was inspired by the
cerebral cortex, a much wider range of architectures is needed to
control movements and vital functions. Subcortical parts of mam-
malian brains essential for survival can be found in all vertebrates,
including the basal ganglia that are responsible for reinforcement
learning and the cerebellum, which provides the brain with forward
models of motor commands. Humans are hypersocial, with ex-
tensive cortical and subcortical neural circuits to support complex
social interactions (23). These brain areas will provide inspiration
to those who aim to build autonomous AI systems.
For example, the dopamine neurons in the brainstem compute

reward prediction error, which is a key computation in the tem-
poral difference learning algorithm in reinforcement learning and,
in conjunction with deep learning, powered AlphaGo to beat Ke
Jie, the world champion Go player in 2017 (24, 25). Recordings
from dopamine neurons in the midbrain, which project diffusely
throughout the cortex and basal ganglia, modulate synaptic plas-
ticity and provide motivation for obtaining long-term rewards (26).
Subsequent confirmation of the role of dopamine neurons in
humans has led to a new field, neuroeconomics, whose goal is to
better understand how humans make economic decisions (27).
Several other neuromodulatory systems also control global brain

states to guide behavior, representing negative rewards, surprise,
confidence, and temporal discounting (28).
Motor systems are another area of AI where biologically in-

spired solutions may be helpful. Compare the fluid flow of ani-
mal movements to the rigid motions of most robots. The key
difference is the exceptional flexibility exhibited in the control of
high-dimensional musculature in all animals. Coordinated be-
havior in high-dimensional motor planning spaces is an active
area of investigation in deep learning networks (29). There is
also a need for a theory of distributed control to explain how the
multiple layers of control in the spinal cord, brainstem, and
forebrain are coordinated. Both brains and control systems have
to deal with time delays in feedback loops, which can become
unstable. The forward model of the body in the cerebellum pro-
vides a way to predict the sensory outcome of a motor command,
and the sensory prediction errors are used to optimize open-loop
control. For example, the vestibulo-ocular reflex (VOR) stabilizes
image on the retina despite head movements by rapidly using head
acceleration signals in an open loop; the gain of the VOR is
adapted by slip signals from the retina, which the cerebellum uses
to reduce the slip (30). Brains have additional constraints due to
the limited bandwidth of sensory and motor nerves, but these can
be overcome in layered control systems with components having a
diversity of speed–accuracy trade-offs (31). A similar diversity is
also present in engineered systems, allowing fast and accurate
control despite having imperfect components (32).

Toward Artificial General Intelligence
Is there a path from the current state of the art in deep learning
to artificial general intelligence? From the perspective of evolu-
tion, most animals can solve problems needed to survive in their
niches, but general abstract reasoning emerged more recently in
the human lineage. However, we are not very good at it and need
long training to achieve the ability to reason logically. This is be-
cause we are using brain systems to simulate logical steps that have
not been optimized for logic. Students in grade school work for years
to master simple arithmetic, effectively emulating a digital computer
with a 1-s clock. Nonetheless, reasoning in humans is proof of
principle that it should be possible to evolve large-scale systems of
deep learning networks for rational planning and decision making.
However, a hybrid solution might also be possible, similar to neural
Turing machines developed by DeepMind for learning how to copy,
sort, and navigate (33). According to Orgel’s Second Rule, nature is
cleverer than we are, but improvements may still be possible.
Recent successes with supervised learning in deep networks

have led to a proliferation of applications where large datasets
are available. Language translation was greatly improved by train-
ing on large corpora of translated texts. However, there are many
applications for which large sets of labeled data are not available.
Humans commonly make subconscious predictions about out-
comes in the physical world and are surprised by the unexpected.
Self-supervised learning, in which the goal of learning is to predict
the future output from other data streams, is a promising direction
(34). Imitation learning is also a powerful way to learn important
behaviors and gain knowledge about the world (35). Humans have
many ways to learn and require a long period of development to
achieve adult levels of performance.
Brains intelligently and spontaneously generate ideas and so-

lutions to problems. When a subject is asked to lie quietly at rest
in a brain scanner, activity switches from sensorimotor areas to a
default mode network of areas that support inner thoughts, in-
cluding unconscious activity. Generative neural network models
can learn without supervision, with the goal of learning joint
probability distributions from raw sensory data, which is abundant.
The Boltzmann machine is an example of generative model (8).
After a Boltzmann machine has been trained to classify inputs,
clamping an output unit on generates a sequence of examples
from that category on the input layer (36). Generative adversarial

Fig. 5. Levels of investigation of brains. Energy efficiency is achieved by
signaling with small numbers of molecules at synapses. Interconnects be-
tween neurons in the brain are 3D. Connectivity is high locally but relatively
sparse between distant cortical areas. The organizing principle in the cortex
is based on multiple maps of sensory and motor surfaces in a hierarchy. The
cortex coordinates with many subcortical areas to form the central nervous
system (CNS) that generates behavior.
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networks can also generate new samples from a probability dis-
tribution learned by self-supervised learning (37). Brains also gen-
erate vivid visual images during dream sleep that are often bizarre.

Looking ahead
We are at the beginning of a new era that could be called the
age of information. Data are gushing from sensors, the sources for
pipelines that turn data into information, information into knowl-
edge, knowledge into understanding, and, if we are fortunate,

knowledge into wisdom. We have taken our first steps toward
dealing with complex high-dimensional problems in the real world;
like a baby’s, they are more stumble than stride, but what is im-
portant is that we are heading in the right direction. Deep learning
networks are bridges between digital computers and the real
world; this allows us to communicate with computers on our own
terms. We already talk to smart speakers, which will become much
smarter. Keyboards will become obsolete, taking their place in
museums alongside typewriters. This makes the benefits of deep
learning available to everyone.
In his essay “The Unreasonable Effectiveness of Mathematics

in the Natural Sciences,” Eugene Wigner marveled that the
mathematical structure of a physical theory often reveals deep
insights into that theory that lead to empirical predictions (38).
Also remarkable is that there are so few parameters in the equa-
tions, called physical constants. The title of this article mirrors
Wigner’s. However, unlike the laws of physics, there is an abundance
of parameters in deep learning networks and they are variable. We
are just beginning to explore representation and optimization in
very-high-dimensional spaces. Perhaps someday an analysis of the
structure of deep learning networks will lead to theoretical predic-
tions and reveal deep insights into the nature of intelligence. We can
benefit from the blessings of dimensionality.
Having found one class of functions to describe the complexity

of signals in the world, perhaps there are others. Perhaps there is
a universe of massively parallel algorithms in high-dimensional
spaces that we have not yet explored, which go beyond intuitions
from the 3D world we inhabit and the 1-dimensional sequences of
instructions in digital computers. Like the gentleman square in
Flatland (Fig. 1) and the explorer in the Flammarion engraving (Fig.
6), we have glimpsed a new world stretching far beyond old horizons.

Data Availability
There are no data associated with this paper.
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Fig. 6. The caption that accompanies the engraving in Flammarion’s book
reads: “A missionary of the Middle Ages tells that he had found the point
where the sky and the Earth touch . . ..” Image courtesy of Wikimedia
Commons/Camille Flammarion.
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