
PDP Models and

We are naturally optimistic about parallel distributed processing as a
valuable framework for creating cognitive models. This does not mean,
however, that there are no tough problems to be solved. Indeed, we
have spent much of our effort convincing ourselves that POP models
could form a reasonable basis for modeling cognitive processes in gen-
eral. In this chapter we shall address some of the objections that we
and others have raised to the work and sketch our answers to these

objections. However, we should like to say at the outset that we do not
believe that any such general considerations as those discussed here
will , in the end, bear much weight. The real proof is in the pudding.
If PDP models are a valuable way to proceed, their usefulness will be

proved in the added insights they bring to the particular substantive
areas in which they are applied. The models we describe in later
chapters are largely intended to constitute the beginnings of such a
proof .

Many of the questions and issues raised below are addressed by
material described in detail in other chapters in the book. For this rea-

son, much of our present discussion is in the form of pointers to the
relevant discussions. In this sense, this chapter serves not only as a
discussion of our approach but as an overview of the issues and topics
~hat are addressed in the chapters that follow .
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SOME OBJECTIONS TO THE PDP APPROACH

The one-layer perceptron. The most commonly heard objection to
POP models is a variant of the claim that POP models cannot perform
any interesting computations. One variant goes like this : "These POP
models sound a lot like perceptrons to me. Didn ' t Minsky and Papert
show that perceptron-like models couldn' t do anything interesting ?"
This comment represents a misunderstanding of what Minsky and
Papert (1969) have actually shown. A brief sketch of the context in
which Minsky and Papert wrote will help clarify the situation . (See
Chapter 5 for a somewhat fuller account of this history .)

In the late 1950s and early 1960s there was a great deal of effort in
the development of self-organizing networks and similar POP-like com-
putational devices. The best known of these was the perceptron
developed by Frank Rosenblatt (see, for example, Rosenblatt, 1962) .
Rosenblatt was very enthusiastic about the perceptron and hopeful that
it could serve as the basis both of artificial intelligence and the model-
ing of the brain. Minsky and Papert, who favored a serial symbol pro-
cessing approach to artificial intelligence, undertook a very careful
mathematical analysis of the perceptron in their 1969 book entitled ,
simply , Perceptrons.

The perceptron Minsky and Papert analyzed most closely is illustrated
in Figure 1. Such machines consist of what is generally called a retina,
an array of binary inputs sometimes taken to be arranged in a two-
dimensional spatial layout; a set of predicates, a set of binary threshold
units with fixed connections to a subset of units in the retina such that

each predicate computes some local function over the subset of units to
which it is connected; and one or more decision units, with modifiable
connections to the predicates. This machine has only one layer of
modifiable connections; for this reason we will call it a one-layer percep-
tron .

Minsky and Papert set out to show which functions can and cannot
be computed by this class of machines. They demonstrated, in particu-
lar, that such perceptrons are unable to calculate such mathematical

functions as parity (whether an odd or even number of points are on in
the retina) or the topological function of connectedness (whether all
points that are on are connected to all other points that are on either
directly or via other points that are also on) without making use of
absurdly large numbers of predicates. The analysis is extremely elegant
and demonstrates the importance of a mathematical approach to analyz-
ing computational systems.
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PERSPECTIVE

FIGURE 1. The one-layer perceptron analyzed by Minsky and Papert. (From Perceptrons
by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by
MIT Press. Reprinted by permission.)

Minsky and Papert's analysis of the limitations of the one-layer per-
ceptron, coupled with some of the early successes of the symbolic pro-
cessing approach in artificial intelligence, was enough to suggest to a
large number of workers in the field that there was no future in
perceptron-like computational devices for artificial intelligence and cog-
nitive psychology. The problem is that although Minsky and Papert
were perfectly correct in their analysis, the results apply only to these
simple one-layer perceptrons and not to the larger class of perceptron-
like models. In particular (as Minsky and Papert actually conceded) , it
can be shown that a multilayered perceptron system, including several
layers of predicates between the retina and the decision stage, can com-
pute functions such as parity, using reasonable numbers of units each
computing a very local predicate. (See Chapters 5 and 8 for examples
of multilayer networks that compute parity) . Similarly , it is not diffi -
cult to develop networks capable of solving the connectedness or
inside/outside problem. Hinton and Sejnowski have analyzed a version
of such a network (see Chapter 7) .

Essentially, then , although Minsky and Papert were exactly correct in
their analysis of the one-layer perceptron, the theorems don't apply to
systems which are even a little more complex. In particular, it doesn' t
apply to multilayer systems nor to systems that allow feedback loops.

Minsky and Papert argued that there would not be much value to
multilayer perceptrons. First , they argued that these systems are suffi -
ciently unrestricted as to be vacuous. They pointed out , for example,
that a universal computer could be built out of linear threshold units .
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Therefore , restricting consideration of machines made out of linear
threshold units is no restriction at all on what can be computed.

We don't , of course, believe that the class of models sketched in

Chapter 2 is a small or restrictive class. (Nor , for that matter, are the
languages of symbol processing systems especially restrictive .) The real
issue, we believe, is that different algorithms are appropriate to dif -
ferent architectural designs. We are investigating an architecture in
which cooperative computation and parallelism is natural. Serial sym-
bolic systems such as those favored by Minsky and Papert have a
natural domain of algorithms that differs from those in POP models.

Not everything can be done in one step without feedback or layering
(both of which suggest a kind of "seriality " ) . We have been led to con-
sider models that have both of these features. The real point is that we
seek algorithms that are as parallel as possible. We believe that such
algorithms are going to be closer in form to the algorithms which could
be employed by the hardware of the brain and that the kind of parallel-
ism we employ allows the exploitation of multiple information sources
and cooperative computation in a natural way.

A further argument advanced by Minsky and Papert against
perceptron-like models with hidden units is that there was no indication

how such multilayer networks were to be trained. One of the appealing
features of the one-layer perceptron is the existence of a powerful
learning procedure, the perceptron convergence procedure of Rosen-
blatt . In Minsky and Papert's day, there was no such powerful learning
procedure for the more complex multilayer systems. This is no longer
true . Chapters 5, 6, 7, and 8 all provide schemes for learning in sys-
tems with hidden units . Indeed, Chapter 8 provides a direct generaliza-
tion of the perceptron learning procedure which can be applied to arbi-
trary networks with multiple layers and feedback among layers. This
procedure can, in principle , learn arbitrary functions including , of
course, parity and connectedness.

The problem of stimulus equivalence. A second problem with early
POP models- and one that is not necessarily completely overcome by
multilayer systems- is the problem of invariance or stimulus equivalence.
An A is an A is an A , no matter where on the retina it appears or how
large it is or how it is oriented~ and people can, in general, recognize
patterns rather well despite various transformations . It has always
seemed elegant and natural to imagine that an A , no matter where it is
presented, is normalized and then processed for recognition using
stored knowledge of the appearance of the letter (Marr , 1982~ Neisser,
1967) .

In conventional computer programs this seems to be a rather
straightforward matter requiring , first , normalization of the input , and,
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second , analysis of the normalized input . But in early PDP models it

was never clear just how normalization could be made to work . Indeed ,
one of the main criticisms of perceptrons - one that is often leveled at

more recent PDP models , too - is that they appear to provide no

mechanism of attention , no way of focusing the machine on the

analysis of a part of a larger whole and then switching to another part or
back to the consideration of the whole .

While it is certainly true that certain PDP models lack explicit atten -

tional mechanisms , it is far from true that PDP mechanisms are in

principle incapable of exhibiting attentional phenomena . Likewise ,
while it is true that certain PDP models do not come to grips with the

stimulus equivalence problem , it far from true that they are incapable

of doing this in principle . To prove these points , we will describe a
method for solving the stimulus equivalence problem that was

described by Hinton ( 1981b) . The idea is sketched in Figure 2. Essen-

tially , it involves two sets of feature detectors . One (at the bottom of

the figure ) consists of retinocentric feature detectors and the other
(above the retinocentric units ) consists of canonical feature detectors .

Higher order units that recognize canonical patterns (in this example ,
letters ) sit above the canonical feature detectors and can have mutually

excitatory connections to these feature detectors , just as in the interac -
tive activation model of word recognition . What Hinton described was

a method for mapping retinocentric feature patterns into canonical pat-

terns . In general , for patterns in three -space, there are six degrees of

freedom , but for present purposes we will consider only figures that are
rotated around a fixed point in the plane . Here normalization simply
amounts to a one -dimensional rotational transformation .

A fixed mapping from retinocentric units to canonical units would

involve connecting each retinocentric feature detector to the

corresponding canonical feature detector . Thus , to correct for a 900
clockwise rotation in the plane , we would want each retinal unit to pro -

ject to the canonical unit corresponding to it at an offset of 90 .
How to implement variable mappings ? Hinton proposed the use of a

set of mapping units which act to switch on what amount to dynamically
programmable connections from the retinocentric units to the canonical
units . In the figure , three different mapping units are shown on the

right : one that produces no rotation at all , one that produces a 90 
clockwise rotation , and one that produces a 90  counterclockwise rota -

tion . When one of these mapping units is active , it provides one of two

inputs to a subset of the programmable connections. Thus, when the
90  clockwise mapping unit is active , it provides one of two inputs to
the connection from each retinocentric unit to the central unit that

corresponds to it under the 90  clockwise rotation . These connections

are multiplicative - they pass the product of their two inputs on to the
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FIGURE 2 . Hinton ' s ( 1981b ) scheme for mapping patterns in one coordinate system

into patterns in another coordinate system . At the top are two letter - detector units , with

mutual excitatory connections to the six canonical feature units ( the position and orienta -

tion of the line segment each of these detectors represents is indicated by the line seg -

ment in the " body " of each unit ) . At the bottom are six retinocentric feature units , and at

the right are units corresponding to each of three different mappings from retinocentric

to canonical features . ( The arrows on the units indicate which direction in the retinocen -

tric frame corresponds to upright in the canonical frame , and the arrow outside the unit

indicates the nature of the transformation imposed on the retinocentric pattern ) . Each

canonical unit receives three pairs of inputs , with each pair arriving at a multiplicative

connection . These inputs are illustrated for one canonical unit only .

receiving unit . In this case , if a particular retinocentric feature is on

and the 900 clockwise mapping unit is on , then the canonical feature

corresponding to the active retinal feature will receive an excitatory

input . If just one of the two inputs to the connection is on , no activa -

tion will flow to the central unit . In this way , when a mapping unit is

active , it effectively programs the multiplicative connections needed to

implement the corresponding mapping by activating one of the two

inputs to each of the programmable connections .

Using this mechanism , it is possible to map from retinal to central

coordinates if the mapping is known in advance . Object recognition can

now proceed as follows : A mapping is chosen ( perhaps on the basis of

processing the preceding stimulus ) , and this is used to map a retinal

input onto the canonical units . In a system involving variable
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translational mappings, in addition to the rotational mappings shown
here, it would be possible to focus the attention of the system succes-
sively on each of several different patterns merely by changing the
mapping. Thus it would not be difficult to implement a complete sys-
tem for sequential processing of a series of patterns using Hinton 's
scheme (a number of papers have proposed mechanisms for performing

a set of operations in sequence, including Grossberg, 1978, and
Rumelhart & Norman , 1982~ the latter paper is discussed in Chapter 1) .

So far , we have described what amounts to a POP implementation of
a conventional pattern recognition system. First , map the pattern into
the canonical frame of reference, then recognize it . Such is the pro-
cedure advocated, for example, by Neisser (1967) and Marr (1982) .
The demonstration shows that POP mechanisms are in fact capable of
normalization and of focusing attention successively on one pattern
after another.

But the demonstration may also seem to give away too much. For it

seems to suggest that the POP network is simply a method for imple-
menting standard sequential algorithms of pattern recognition . We
seem to be left with the question, what has the POP implementation
added to our understanding of the problem?

It turns out that it has added something very important . It allows us

to begin to see how we could solve the problem of recognizing an input
pattern even in the case where we do not know in advance either what
the pattern is or which mapping is correct. In a conventional sequential
algorithm , we might proceed by serial se.arch, trying a sequence of map-
pings and looking to see which mapping resulted in the best recognition
nerformance. With Hinton 's mapping units , however, we can actually.
perform this search in parallel. To see how this parallel search would
work , it is first necessary to see how another set of multiplicative con-
nections can be used to choose the correct mapping for a pattern given

both the retinal input and the correct central pattern of activation.
In this situation , this simultaneous activation of a central feature and

a retinal feature constitutes evidence that the mapping that connects
them is the correct mapping. We can use this fact to choose the map-

ping by allowing central and retinal units that correspond under a par-
ticular mapping to project to a common multiplicative connection on
the appropriate mapping unit . Spurious conjunctions will of course
occur, but the correct mapping units will generally receive more con-
junctions of canonical and retinal features than any other (unless there
is an ambiguity due to a symmetry in the figure) . If the mapping units
compete so that the one receiving the most excitation is allowed to win ,
the network can settle on the correct mapping.

We are now ready to see how it may be possible to simultaneously
settle on a mapping and a central representation using both sets of
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multiplicative connections. We simply need to arrange things so that
when the retinal input is shown , each possible mapping we wish to con -

sider is partially active . Each retinal feature then provides partial
activation of the canonical feature corresponding to it under each of the

mappings . The correct mapping allows the correct canonical pattern to

be partially activated, albeit partially obscured by noise generated by the
other partially activated mappings . Interactive activation between this

central pattern and higher level detectors for the pattern then reinforces
the elements of the pattern relative to the noise . This process by itself

can be sufficient for correct recognition . Further cleanup of the central

pattern can be achieved , though , by allowing the pattern emerging on
the central units to work together with the input pattern to support the
correct mapping over the other partially active mappings via the multi -

plicative connections onto the mapping units . This then results in
further suppression of the noise . As this process continues , it eventu -

ally locks in the correct interpretation of the pattern , the correct canoni -
cal feature representation , and the correct mapping , all from the retinal

input alone . Prior activation of the correct mapping facilitates the pro -
cess of settling in , as do prior cues to the identity of the figure (see

Rock , 1973 , and Palmer , 1980 , for evidence that these clues do facili -

tate performance ) , but are not , in general , essential unless the input is

in fact ambiguous without them .

Hinton ' s mapping scheme allows us to make two points . First , that

parallel distributed processing is in fact compatible with normalization

and focusing of attention ~ and second , that a POP implementation of a
normalization mechanism can actually produce a computational advan -

tage .by allowing what would otherwise be a painful , slow , serial search
to be carried out in a single settling of a parallel network . In general ,

Hinton ' s mapping system illustrates that POP mechanisms are not res-
tricted to fixed computations but are quite clearly capable of modula --
tion and control by signals arising from other parts of an integrated pro -

cessing system ~ and that they can , when necessary , be used to imple -
ment a serial process , in which each of several patterns is considered ,

one at a time .

The introduction of multiplicative or contingent connections (Feld -

man & Ballard, 1982) is a way of greatly increasing the power of POP
networks of fixed numbers of units (Marr , 1982~ Poggio & Torre , 1978~

see Chapter 10) . It means , essentially , that each unit can perform com -

putations as complex as those that could be performed by an entire

one -layer perceptron , including both the predicates and the decisi "on
unit . However , it must also be noted that multiplicative connections are

not strictly necessary to perform the required conjunctive computational
operations . Nonlinear , quasi -multiplicative interactions can ~e imple -

mented in a variety of ways. In the worst case, whole units could
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be dedicated to each multiplicative operation (as in the predicate layer
of the perceptron ) . 1

While Hinton 's mapping mechanism indicates how attention might

be implemented in PDP systems and imports some of the power of

parallel distributed processing into the problem of simultaneously solv -

ing the mapping problem and the recognition problem , it does leave

something to be desired . This is the fact that it allows only a single
input pattern to be processed at one time since each pattern must be
mapped separately onto the canonical feature units . Serial attention is

sometimes required , but when we must resort to it , we lose the possi -

bility of exploiting simultaneous , mutual constraints among several pat-

terns . What has been processed before can still influence processing ,
but the ensemble of to -be-processed patterns cannot exert simultane -

ous , mutual influen ~e on each other .

There is no doubt that sequentiality is forced upon us in some

tasks - precisely those tasks in which the thought processes are
extended over several seconds or minutes in time - and in such cases

PDP mechanisms should be taken to provide potential accounts of the

internal structure of a lJrocess evolving in time during the temporally

extended structure of the thought process (see Chapter 14) . But , in

keeping with our general goals , we have sought to discover ways to

maximally exploit simultaneous mutual constraints - that is , to
maximize parallelism .

One mechanism which appears to make some progress in this direc -
tion is the connection information distribution mechanism described in

Chapter 16. That mechanism uses multiplicative connections like those
used in Hinton ' s model to send connection information out from a cen-

tral knowledge store so that it can be used in local processing networks ,

each allocated to the contents of a different display location . The

mechanism permits multiple copies of the same knowledge to be used

at the same time , thereby effectively allowing tokens or local copies of

patterns to be constructed from centrally stored knowledge of types in a
parallel distributed processing system . These tokens then can interact

with each other , allowing several patterns , all processed using the same
centrally stored information , to exert simultaneous , mutual constraints

on each other . Since these ideas , and their relation to attention , are
discussed at length in Chapter 16, we will not elaborate on them further
here .

�

1 The linear threshold unit provides a Quasi-multiplicative combination rule, and
Sejnowski (1981) has described in detail how close approximation of the quantitative
properties of multiplication of signals can be achieved by units with properties very much
like those observed in real neurons.
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Recursion . There are many other specific points that have been

raised with respect to existing POP models . Perhaps the most common
one has to do with recursion . The ability to perform recursive function

calls is a major feature of certain computational frameworks , such as

augmented transition network (A TN ) parsers (Woods , 1973~ Woods &

Kaplan , 1971) , and is a property of such frameworks that gives them

the capability of processing recursively defined structures such as sen-

tences , in which embedding may produce dependencies between ele -

ments of a surface string that are indefinitely far removed from each

other (Chomsky , 1957) . It has often been suggested that POP

mechanisms lack the capacity to perform recursive computations and so

are simply incapable of providing mechanisms for processing sentences

and other recursively defined structures .

As before , these suggestions are simply wrong . As we have already

seen, one can make an arbitrary computational machine out of linear

threshold units , including , for example , a machine that can carry out all

the operations necessary for implementing a Turing machine ~ the one
limitation is that real biological systems cannot be Turing machines

because they have finite hardware . In Chapter 14, however , we point
out that with external memory aids (such as paper and pencil and a

notational system ) such limitations can be overcome as well .
We have not dwelt on POP implementations of Turing machines and

recursive processing engines because we do not agree with those who

would argue that such capabilities are of the essence of human compu -

tation . As anyone who has ever attempted to process sentences like

"The man the boy the girl hit kissed moved " can attest , our ability to

process even moderate degrees of center -embedded structure is grossly

impaired relative to that of an A TN parser . And yet , the human ability

to use semantic and pragmatic contextual information to facilitate

comprehension far exceeds that of any existing sentence processing
machine we know of .

What is needed , then , is not a mechanism for flawless and effortless

processing of center -embedded constructions . Compilers of computer

languages generally provide such facilities , and they are powerful tools ,

but they have not demonstrated themselves sufficient for processing

natural language . What is needed instead is a parser built from the
kind of mechanism which facilitates the simultaneous consideration of

large numbers of mutual and interdependent constraints . The challenge
is to show how those processes that others have chosen to explain in
terms of recursive mechanisms can be better explained by the kinds of

processes natural for POP networks .

This challenge is one that has not yet been fully met . However ,

some initial steps toward a POP model of language processing are

described in Chapter 19. The model whose implementation is



120 THE POP PERSPECTIVE

described in that chapter illustrates how a variety of different con -

straints may be combined by POP models to aid in the assignment of

underlying roles to the constituents of sentences . The chapter also pro -

vides a discussion of three different ways in which the model could be

extended to process embedded clauses in a way that is roughly con -

sistent with human capabilities and limitations in this regard .

We do not claim to have solved these problems . Our existing models

have limitations and much remains to be done . Our explorations have

just begun . The Question is not , is the job done - no computational

framework can claim much on this score . The Question instead is , can

more progress be made through further exploration of the POP per -

spective on the microstructure of cognition ? The discovery of mul -

tilayer learning rules , the use of multiplicative connections to imple -

ment transformations of input patterns , the distribution of connection

information , and the host of other developments described throughout

this book , indicate to us that the answer to the question is " yes . "

PDP Models Are Not Cognitive

We have observed that the cooperative character of parallel

distributed processing often allows us to account for behavior which has

previously been attributed to the application of specific rules of

grammar or rules of thought . This has sometimes led us to argue that

lawful behavior is not necessarily rule - driven behavior . Here , we must

distinguish between rules and regularities . The bouncing ball and the

orbiting planet exhibit regularities in their behavior , but neither is

applying rules . We have demonstrated the power of this approach in

our earlier work on word perception ( McClelland & Rumelhart , 1981 ;

Rumelhart & McClelland , 1982 ) and on the learning of English mor -

phology ( Chapter 18 ) . In these cases we have been able to show how

the apparent application of rules could readily emerge from interactions

among simple processing units rather than from application of any

higher level rules .

Some have viewed our argument against explicit rules as an argu -

ment against the cognitive approach to psychology . We do not agree .

We believe that we are studying the mechanisms of cognition . The

application of a rule ( e . g . , the firing of a production ) is neither more

nor less cognitive than the activation of our units . The real character

of cognitive science is the attempt to explain mental phenomena

through an understanding of the mechanisms which underlie those

phenomena .



A related claim that some people have made is that our models

appear to share much in common with behaviorist accounts of
behavior. While they do involve simple mechanisms of learning, there
is a crucial difference between our models and the radical behaviorism
of Skinner and his followers . In our models, we are explicitly con-
cerned with the problem of internal representation and mental process-

ing, whereas the radical behaviorist explicitly denies the scientific utility
and even the validity of the consideration of these constructs. The
training of hidden units is, as is argued in Chapters 5 to 8, the con-
struction of internal representations. The models described throughout
the book all concern internal mechanisms for activating and acquiring

the ability to activate appropriate internal representations. In this
sellse, our models must be seen as completely antithetical to the radical
behaviorist program and strongly committed to the study of representa-
tion and process.
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PI) P Models Are the Wrong Level of Analysis

It is sometimes said that although POP models are perfectly correct ,

thl~y are at the wrong level of analysis and therefore not relevant to

ps:ychological data . 2 For example , Broadbent ( 1985) has argued that

psychological evidence is irrelevant to our argument about distributed

ml~mory because the distribution assumption is only meaningful at what
Marr ( 1982) has called the implementational (physiological ) level and

th ,at the proper psychological level of description is the computational
le~{el .

The issues of levels of analysis and of theorizing is difficult and

requires a good deal of careful thought . It is , we believe , largely an

is~~ue of scientific judgement as to what features of a lower level of

an.alysis are relevant to a higher one . We are Quite sure that it is not a

matter for prescription . We begin our response to this objection with a

review of Marr ' s analysis and his three levels of description . We then

suggest that indeed our models are stated at the same level (in Marr ' s
sense) as most traditional models from cognitive science . We then

d~:scribe other senses of levels , including one in which higher level

accounts can be said to be convenient approximations to lower level

accounts . This sense comes closest to capturing our view of the

-

:! The following discussion is based on a paper (Rumelhart & McClelland, 1985) written
in response to a critique by Donald Broadbent (1985) on our work on distributed
m,~mory (cf. Chapter 17 and McClelland & Rumelhart, 1985).
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relation between our POP models and other traditional information

David Marr (1982) has provided an influential analysis of the issue
of levels in cognitive science. Although we are not sure that we agree
entirely with Marr 's analysis, it is thoughtful and can serve as a starting
point . Whereas Broadbent acknowledges only two levels of theory, the
computational and the implementational , Marr actually proposes three,
the computational, the algorithmic, and the implementational levels.
Table 1 gives a description of Marr 's three levels. We believe that POP
models are generally stated at the algorithmic level and are primarily
aimed at specifying the representation of information and the processes
or procedures involved in cognition . Furthermore , we agree with
Marr 's assertions that "each of these levels of description will have their
place" and that they are " logically and causally rel'atedit Thus, no par-
ticular level of description is independent of the others. There is an
implicit computational theory in PDP models as well as an appeal to
certain implementational (physiological) considerations. We believe
this to be appropriate. It is clear that different algorithms are more
naturally implemented on different types of hardware and, therefore ,
information about the implementation can inform our hypotheses at the
algorithmic level .
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Marr 's Notion of Levels

TABLEt

�

�

processing models.

Computational Theory�

What is the goal of the
computation, why is it
appropriate, and what is
the logic of the strategy
by which it can be carried
out?

How can this computa-
tional theory be imple-
mented? In particular ,
what is the representation
for the input and output ,

and what is the algorithm
for the transformation ?

How can the representa-
tion and algorithm be
realized physically?

Note. From Vision by D. Marr, 1982, San Francisco: W. H. Freeman. Copyright 1982
by W. H. Freeman. Reprinted by permission.

THE THREE LEVELS AT WHICH ANY MACHINE CARRYING OUT
INFORMATION PROCESSING TASKS MUST BE UNDERSTOOD

Representation and Hardware
Algorithm Implementation



Computational models, according to Marr , are focused on a formal
analysis of the problem the system is solving - not the methods by
which it is solved. Thus, in linguistics , Marr suggests that Chomsky's
(1965) view of a competence model for syntax maps most closely onto a
computational level theory , whereas a psycholinguistic theory is more of
a performance theory concerned with how grammatical structure might
actually be computed. Such a theory is concerned with the algorithmic
level of description. It is the algorithmic level at which we are con-
cerned with such issues as efficiency , degradation of performance under
noise or other adverse conditions , whether a particular problem is easy

or difficult , which problems are solved quickly and which take a long
time to solve, how information is represented, etc. These are all ques-
tions to which psychological inquiry is directed and to which psychologi-
cal data is relevant. Indeed, it would appear that this is the level to
which psychological data speaks most strongly. At the computational
level , it does not matter whether the theory is stated as a program for a
Turing machine, as a set of axioms, or as a set of rewrite rules. It does
not matter how long the computation takes or how performance of the
computation is affected by " performance" factors such as memory load,
problem complexity , etc. It doesn't matter how the information is
represented, as long as the representation is rich enough, in principle ,
to support computation of the required function . The question is sim-
ply what junction is being computed, not how is it being computed.

Marr recommends that a good strategy in the development of theory
is to begin with a careful analysis of the goal of a particular computation
and a formal analysis of the problem that the system is trying to solve.
He believes that this top-down approach will suggest plausible algo-
rithms more effectively than a more bottom -up approach. Thus, the
computational level is given some priority . However, Marr certainly
does not propose that a theory at the computational level of description
is an adequate psychological theory.

As psychologists, we are committed to an elucidation of the algo-
rithmic level . We have no Quarrel with Marr 's top-down approach as a
strategy leading to the discovery of cognitive algorithms, though we
have proceeded in a different way. We emphasize the view that the
various levels of description are interrelated . Clearly, the algorithms
must, at least roughly , compute the function specified at the computa-
tional level. Equally clearly, the algorithms must be computable in
amounts of time commensurate with human performance, using the
kind and amount of hardware that humans may reasonably be assumed
to possess. For example, any algorithm that would require more
specific events to be stored separately than there are synapses in the
brain should be given a lower plausibility rating than those that require
much less storage. Similarly , in the time domain, those algorithms that

1234. GENERAL ISSUES
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would require more than one serial step every millisecond or so would

seem poor candidates for implementation in the brain (Feldman &

Ballard , 1982 ) .

In short , the claim that our models address a fundamentally different

level of description than other psychological models is based on a

failure to acknowledge the primary level of description to which much

psychological theorizing is directed . At this level , our models should

be considered as competitors of other models as a means of explaining

psychological data .

Other notions of levels . Yet we do believe that in some sense POP

models are at a different level than other cognitive models such as pro -

totype theories or schema theory . The reason is that there is more

between the computational and the implementational levels than is

dreamt of , even in Marr ' s scheme . Many of our colleagues have chal -

lenged our approach with a rather different conception of levels bor -

rowed from the notion of levels of programming languages . It might

be argued that a model such as , say , schema theory or the ACT . model

of John R . Anderson ( 1983 ) is a statement in a " higher level " language

analogous , let us say , to the Pascal or LISP programming languages and

that our distributed model is a statement in a " lower level 't theory that

is , let us say , analogous to the assembly code into which higher level

programs can be compiled . Both Pascal and assembler , of course , are

considerably above the hardware level , though the latter may in some

sense be closer to the hardware and more machine dependent than the

former .

From this point of view one might ask why we are mucking around

trying to specify our algorithms at the level of assembly code when we

could state them more succinctly in a high - level language . We believe

that most people who raise the levels issue with regard to our models

have a relationship something like this in mind . People who adopt this

notion have no objection to our models . They only believe that

psychological models are more simply and easily stated in an equivalent

higher level language - so why bother ?

We believe that the programming language analogy is very mislead -

ing , unless it is analyzed more carefully . The relationship between a

Pascal program and its assembly code counterpart is very special indeed .

It is necessary for the Pascal and assembly language to map exactly onto

one another only when the program was written in Pascal and the

assembly code was compiled from the Pascal version . Had the original

t' programming " taken place in assembler , there is no guarantee that

such a relationship would exist . Indeed , Pascal code will , in general ,

compile into only a small fraction of the possible assembly code pro -

grams that could be written . Since there is every reason to suppose



that most of the programming that might be taking place in the brain is
taking place at a " lower level " rather than a "higher level ," it seems
unlikely that some particular higher level description will be identical to
some particular lower level description. We may be able to capture the
actual code approximately in a higher level language- and it may often
be useful to do so- but this doeS' not mean that the higher level

language is an adequate characterization.
There is still another notion of levels which illustrates our view.

This is the notion of levels implicit in the distinction between
Newtonian mechanics on the one hand and quantum theory on the

other . 3 It might be argued that conventional symbol processing models
are macroscopic accounts, analogous to Newtonian mechanics, whereas
our models offer more microscopic accounts, analogous to quantum
theory. Note , that over much of their range, these two theories make
precisely the same predictions about behavior of objects in the world .
Moreover , the Newtonian theory is often much simpler to compute
with since it involves discussions of entire objects and ignores much of
their internal structure . However, in some situations Newtonian theory
breaks down. In these situations we must rely on the microstructural

account of quantum theory. Through a thorough understanding of the
relationship between the Newtonian mechanics and quantum theory we
can understand that the macroscopic level of description may be only an

approximation to the more microscopic theory. Moreover , in physics,
we understand just when the macrotheory will fail and the microtheory
must be invoked . We understand the macrotheory as a useful formal

tool by virtue of its relationship to the microtheory . In this sense the
objects of the macrotheory can be viewed as emerging from interactions
of the particles described at the microlevel .

The basic perspective of this book is that many of the constructs of
macrolevel descriptions such as schemata, prototypes, rules, produc-
tions, etc. can be viewed as emerging out of interactions of the
microstructure of distributed models. These points are most explicitly
considered in Chapters 6, 14, 17, and 18. We view macrotheories as
approximations to the underlying microstructure which the distributed
model presented in our paper attempts to capture. As approximations
they are often useful, but in some situations it will turn out that an
examination of the microstructure may bring much deeper insight .

Note for example, that in a conventional model of language acquisition,
one has to make very delicate decisions about the exact circumstances
under which a new rule will be added to the rule system. In our POP
models no such decision need be made. Since the analog to a rule is

suggested
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I to us by Paul Smolensky.

�

3 This analogy was
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not necessarily discrete but simply something that may emerge from

interactions among an ensemble of processing units , there is no prob -

lem with having the functional equivalent of a " partial " rule . The same

observation applies to schemata (Chapter 14) , prototypes and logogens

(Chapter 18) , and other cognitive constructs too numerous to mention .

Thus , although we imagine that rule -based models of language

acquisition - the logogen model , schema theory , prototype theory , and

other macrolevel theories - may all be more or less valid approximate

macrostructural descriptions , we believe that the actual algorithms
involved cannot be represented precisely in any of those macrotheories .

It may also be, however , that some phenomena are too complex to

be easily represented as POP models . If these phenomena took place at

a time frame over which a macrostructural model was an adequate

approximation , there is no reason that the macrostructural model ought

not be applied . Thus , we believe that the concepts of symbols and

symbol processing can be very useful . Such models may sometimes

offer the simplest accounts . It is , however , important to keep in mind

that these models are approximations and should not be pushed too far .

We suspect that when they are, some account similar to our POP

account will again be required . Indeed , a large part of our own motiva -

tion for exploring the POP approach came from the failure of schema

theory to provide an adequate account of knowledge application even to

the task of understanding very simple stories .

Lest it may seem that we have given too much away, however , it

should be noted that as we develop clearer understandings of the

microlevel models , we may wish to formulate rather different

macrolevel models . As pointed out in Chapter 3, POP mechanisms

provide a powerful alternative set of macrolevel primitives .4

Imagine a computational system that has as a primitive , " Relax into a

state that represents an optimal global interpretation of the current

input ." This would be, of course , an extremely powerful place to begin

building up a theory of higher level computations . Related primitives

would be such things as " Retrieve the representation in memory best

matching the current input , blending into it plausible reconstructions of

details missing from the original memory trace ," and "Construct a

dynamic configuration of knowledge structures that captures the present

situation , with variables instantiated properly ." These sorts of primi -

tives would be unthinkable in most conventional approaches to higher

level cognition , but they are the kinds of emergent properties that POP

mechanisms give us , and it seems very likely that the availability of
�

4 We thank Walter Schneider for stressing in his comments on an earlier draft of this
chapter the importance of the differences between the computational primitives offered
by POP and those offered by other formalisms for modeling cognitive processes.
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such primitives will change the shape of higher level theory
considerably .

POP mechanisms may also place some constraints on what we might

realistically ask for in the way of computational primitives because of

the costs of implementing certain kinds of computations in parallel

hardware in a single relaxation search . The parallel matching of vari -

ablized productions is one case in point . Theories such as ACT . (J. R .

Anderson , 1983) assume that this can be done without worrying about

the implementation and , therefore , provide no principled accounts of
the kinds of crosstalk exhibited in human behavior when processing

multiple patterns simultaneously . However , it appears to be a quite

general property of POP mechanisms that they will exhibit crosstalk

when processing multiple patterns in parallel (Hinton & Lang , 1985;

Mozer , 1984; see Chapters 12 and 16) .

High -level languages often preserve some of the character of the
lower level mechanisms that implement them , and the resource and

time requirements of algorithms drastically depends on the nature of

the underlying hardware . Higher level languages that preserve the
character of PDP mechanisms and exploit the algorithms that are effec -

tive descriptions of parallel networks are not here yet , but we expect

such things to be coming along in the future . This will be a welcome

development , in our view , since certain aspects of cognitive theory

have been too strongly influenced by the discrete , sequential algorithms

available for expression in most current high -level languages .

As we look closely , both at the hardware in which cognitive algo -

rithms are implemented and at the fine structure of the behavior that

these algorithms are designed to capture , we begin to see why it may be

appropriate to formulate models which come closer to describing the

microstructure of cognition . The fact that our microstructural models

can account for many of the facts about the representation of general

and specific information , for example , as discussed in Chapter 18,

makes us ask why we should view constructs like logogens , prototypes ,

and schemata as anything other than convenient approximate descrip -

tions of the underlying structure of memory and thought .

Reductionism and Emergent Properties

A slightly different , though related , argument is that the POP enter -

prise is an exercise in reductionism - an exercise in which all of

psychology is reduced to neurophysiology and ultimately to physics . It

is argued that coherent phenomena which emerge at any level (psychol -

ogy or physics or sociology ) require their own language of description
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and explanation and that we are denying the essence of what is cogni-
tive by reducing it to units and connections rather than adopting a more
psychologically relevant language in our explanations.

We do not classify our enterprise as reductionist , but rather as
interactional . We understand that new and useful concepts emerge at
different levels of organization. We are simply trying to understand the
essence of cognition as a property emerging from the interactions of
connected units in networks.

We certainly believe in emergent phenomena in the sense of
phenomena which could never be understood or predicted by a study of
the lower level elements in isolation. These phenomena are functions
of the particular kinds of groupings of the elementary units . In general,
a new vocabulary is useful to talk about aggregate phenomena rather
than the characteristics of isolated elements. This is the case in many
fields . For example, we could not know about diamonds through the
study of isolated atoms; we can't understand the nature of social sys-
tems through the study of isolated individuals ; and we can' t understand
the behavior of networks of neurons from the study of isolated neu-
rons. Features such as the hardness of the diamond is understandable

through the interaction of the carbon atoms and the way they line up.
The whole is different than the sum of the parts. There are nonlinear
interactions among the parts. This does not , however, suggest that the
nature of the lower level elements is irrelevant to the higher level of
organization- on the contrary, the higher level is, we believe, to be
understood primarily through the study of the interactions among lower
level units . The ways in which units interact is not predictable from the
lower level elements as isolated entities . It is, however, predictable if
part of our study involves the interactions among these lower level
units . We can understand why diamonds are hard, not as an isolated
fact, but because we understand how the atoms of carbon can line up to
form a perfect lattice. This is a feature of the aggregate, not of the
individual atom, but the features of the atom are necessary for under-
standing the aggregate behavior. Until we understand that, we are left
with the unsatisfactory statement that diamonds are hard, period. A
useful fact, but not an explanation. Similarly , at the social level, social
organizations cannot be understood without understanding the
individuals which make up the organization. Knowing about the
individuals tells us little about the structure of the organization, but we
can' t understand the structure of the higher level organizations without
knowing a good deal about individuals and how they function . This is
the sense of emergence we are comfortable with . We believe that it is
entirely consistent with the POP view of cognition .

There is a second, more practical reason for rejecting radical reduc-
tionism as a research strategy. This has nothing to do with emergence;



it has to do with the fact that we can' t know everything and find out

everything at once. The approach we have been arguing for suggests
that to understand something thoroughly at some level requires
knowledge at that level, plus knowledge of the lower levels. Obviously ,
this is impractical. In practice, even though there might be effects of
lower levels on higher levels, one cannot always know them. Thus,
attempting to formulate a description at this higher level as a first order
of approximation is an important research strategy. We are forced into
it if we are to learn anything at all . It is possible to learn a good deal
about psychology without any reference whatsoever to any lower levels.
This practical strategy is not , however, an excuse for ignoring what is
known about the lower levels in the formulation of our higher level
theories. Thus, the economist is wrong to ignore what we might know
about individuals when formulating his theories. The chemist would be
wrong to ignore what is known about the structure of the carbon atom
in explaining the hardness of diamonds. We argued above that the
view that the computational level is correct derives from experience
with a very special kind of device in which the higher level was designed
to give the right answers- exactly. In describing natural intelligence
that can' t , we suspect, be right - exactly. It can be a first order of
approximation . As we learn more about a topic and as we look at it in
more and more detail we are going to be forced to consider more and
more how it might emerge (in the above sense) from the interactions
among its constituents. Interaction is the key word here. Emergent
properties occur whenever we have nonlinear interactions. In these
cases the principles of interaction themselves must be formulated and
the real theory at the higher level is, like chemistry , a theory of interac-
tions of elements from a theory one level lower.
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Not Enough Is Known From Neuroscience to Seriously
Constrain Cognitive Theories

Many cognitive scientists believe that there will eventually be an
understanding of the relationships between cognitive phenomena and
brain functioning . Many of these same people feel , however, that the
brain is such an exceptionally powerful computational device that it is
capable of performing just about any computation . They suppose that
facts now known from neuroscience place little or no restriction on
what theories are possible at a cognitive level . In the meantime, they
suppose, a top-down analysis of possible mechanisms of cognition can
lead to an understanding of cognition that will stand independently of
whatever might be discovered about brain functioning . Moreover , they



believe that neuroscientists can be guided in their bottom-up search for
an understanding of how the brain functions .

We agree with many of these sentiments. We believe that an under-
standing of the relationships between cognitive phenomena and brain
functions will slowly evolve. We also believe that cognitive theories can
provide a useful source of information for the neuroscientist. We do
not , however, believe that current knowledge from neuroscience pro-
vides no guidance to those interested in the functioning of the mind .
We have not , by and large, focused on the kinds of constraints which
arise from detailed analysis of particular circuitry and organs of the
brain. Rather we have found that information concerning brain-style
processing has itself been very provocative in our model building
efforts . Thus, we have, by and large, not focused on neural modeling
(i .e., the modeling of neurons) , but rather we have focused on neurally
inspired modeling of cognitive processes. Our models have not
depended strongly on the details of brain structure or on issues that are
very controversial in neuroscience. Rather, we have discovered that if
we take some of the most obvious characteristics of brain-style process-
ing seriously we are led to postulate models which differ in a number of
important ways from those postulated without regard for the hardware
on which these algorithms are to be implemented . We have found that
top-down considerations revolving about a need to postulate parallel,
cooperative computational models (cf . Rumelhart , 1977) have meshed
nicely with a number of more bottom -up considerations of brain style.
processing.

There are many brain characteristics which ought to be attended to in
the formulation of our models (see Chapters 20 and 21) . There are a
few which we have taken most seriously and which have most affected
our thinking . We discuss these briefly below.

Neurons are slow. One of the most important characteristics of
brain-style processing stems from the speed of its components. Neu-
rons are much slower than conventional computational components.
Whereas basic operations in our modern serial computers are measured
in the nanoseconds, neurons operate at times measured in the
milliseconds- perhaps 10s of milliseconds. Thus, the basic hardware of
the brain is some 106 times slower than that of serial computers. Ima-
gine slowing down our conventional AI programs by a factor of 106.
More remarkable is the fact that we are able to do very sophisticated
processing in a few hundred milliseconds. Clearly, perceptual process-
ing, most memory retrieval , much of language processing, much intui -
tive reasoning, and many other processes occur in this time frame.
That means that these tasks must be done in no more than 100 or so

serial steps. This is what Feldman (1985) calls the lOO-step program
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constraint. Moreover , note that individual neurons probably don't com-
pute very complicated functions . It seems unlikely that a single neuron
computes a function much more complex than a single instruction in a
digital computer. Imagine, again, writing an interesting program in
even 1000 operations of this limited complexity of a serial computer .
Evidently , the brain succeeds through massive parallelism. Thus, we
conclude, the mechanisms of mind are most likely best understood as
resulting from the cooperative activity of very many relatively simple
processing units operating in parallel.
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There is a very large number of neurons . Another self - evident , but

important , aspect of brain - style processing is the very large number of

processing units involved . Conventional estimates hold that there are

on the order of 1010 to lOll neurons in the brain . Moreover , each neu -

ron is an active processing unit . This suggests parallelism on a very

large scale indeed . An understanding of parallel computation involving

a few hundred reasonably complex processors provides the wrong

model . It may well be that it is the massive scale of the parallelism of

the brain that gives it its amazing power .

Although the human brain is large , the number of neurons is not

unlimited . It happens that our models sometimes push the limits of

plausibility because of the large number of units they require . This is a

real constraint , one that we and others have begun to take into account

in evaluating our models ( see Chapter 12 for a discussion of this issue ) .

Neurons receive inputs from a large number of other neurons .

Another important feature of brain processing is the large fan - in and

fan - out to and from each unit . & timates vary , but single cortical neu -

rons can have from 1 , 000 to 100 , 000 synapses on their dendrites and ,

likewise , can make from 1 , 000 to 100 , 000 synapses on the dendrites of

other neurons . Generally , one or a small number of action potentials

received are not enough to generate an action potential ( see , for exam -

ple , Chapter 20 ) . This suggests that human computation does not

involve the kind of logic circuits out of which we make our digital com -

puters , but that it involves a kind of statistical process in which the sin -

gle units do not make decisions , but in which decisions are the product

of the cooperative action of many somewhat independent processing

units . Reliability derives from the stability of the statistical behavior of

large numbers of units . Again , this degree of connectivity should be

contrasted with the number of immediate neighbors of processors in

current parallel computers . Usually these numbers are measured in the

tens ( or less ) rather than in the thousands . Moreover , this large degree

of connectivity suggests that no neuron is very many synapses away

from any other neuron . If , for argument ' s sake , we assume that every



cortical neuron is connected to 1,000 other neurons and that the system
forms a lattice, all of the neurons in the brain would be within , at most,
four synapses from one another. Thus, large fan-in and fan-out leads
to shallow networks. It should finally be noted that even though the
fan-in and fan-out is large, it is not unlimited . As described in Chapter
12, the limitations can cause problems for extending some simple ideas
of memory storage and retrieval .

Connections in the brain seem to have a clear geometric and

topological structure. There are a number of facts about the pattern of
connections in the brain which, we believe, are probably important , but
which have not yet had a large impact on our models. First , most con-
nections are rather short . Some are long (these tend to be excitatory) ,
but not most. There are rather strong geometric and topological con-
straints. There is a rough mapping in that input parameters (such as
spatial location in vision or frequency in audition ) are mapped onto spa-
tial extent in the brain. In general it seems that nearby regions in one
part of the brain map onto nearby regions in another part of the brain.
Moreover , there is a general symmetry of connections. If there are
connections from one region of the brain to another, there are usually
connections in the reverse direction . Some of these features have been

implemented in our models, though, interestingly , most often for com-
putational reasons rather than for biological verisimilitude . For
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Learning involves modifying connections . Another key feature of

our models which derives from our understanding of learning mechan -

isms in the brain is that the knowledge is in the connections rather than in

the units themselves . Moreover , learning is generally assumed to

involve modifying connection strengths . There are real computational

advantages to such a simple learning procedure . Its simplicity and

homogeneity allow us to develop powerful learning procedures which

work simply and incrementally . ( See Chapters 5 , 6 , 7 , 8 ~ Chapters 11 ,

17 , 18 , 24 , and 25 consider the implications of this view . )

Neurons communicate by sending activation or inhibition through

connections . Communication among neurons involves simple excita -

tory and inhibitory messages . Only a few bits can be communicated per

second . Thus , unlike other parallel message passing systems such as

Hewitt ' s ( 1975 ) ACTOR system which allows arbitrary symbolic mes -

sages to be passed among its units , we require simple , signed numbers

of limited precision . This means that the currency of our systems is

not symbols , but excitation and inhibition . To the degree that symbols

are required , they must emerge from this subsymbolic level of

processing ( Hofstadter , 1979 ) .
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example , rough symmetry was a feature of our earlier work on word

perception (cf . McClelland & Rumelhart , 1981) , and it is a feature of

the work described in Chapters 6, 7, 14, 15, and 16. The error propaga-

tion learning rule of Chapter 8 requires a back path for an error signal

to be propagated back through . In general, reciprocally interacting sys-
tems are very important for the kind of processing we see as charac -

teristic of POP models. This is the defining feature of interactive activa-
tion models . We have also employed the view that connections

between systems are excitatory and those within a region are inhibitory .
This is employed to advantage in Chapters 5 and 15.

The geometric structure of connections in the brain have not had

much impact on our work . We generally have not concerned ourselves

with where the units might physically be with respect to one another .
However , if we imagine that there is a constraint toward the conserva -

tion of connection length (which there must be) , it is easy to see that

those units which interact most should be the closest together . If you

add to this the view that the very high -dimensional space determined
by the number of interconnections must be embedded into the two - or

three -dimensional space (perhaps two and a half dimensions ) of the

cortex , we can see the importance of mapping the major dimensions

physically in the geometry of the brain (see Ballard , in press, for a dis-

cussion of embedding high -dimensional spaces into two dimensions ) .

Information is continuously available . Another important feature of
neural information processing is that the neurons seem to provide con-

tinuously available output (Norman & Bobrow , 1975) . That is, there

does not seem to be an appreciable decision phase during which a unit
provides no output . Rather it seems that the state of a unit reflects its

current input . To the degree that a unit represents a hypothesis and its

activation level (instantaneous firing rate or probability of firing )

represents the degree to which evidence favors that hypothesis , the
activation level of the unit provides continuous information about the

current evaluation of that hypothesis . This hypothesis was incorporated

into the precursors of our own work on parallel distributed processing ,
especially the cascade model (McClelland , 1979) and the interactive

model of reading (Rumelhart , 1977) , and it is a feature of virtually all

of the POP models in this book . 5 Interestingly , this contrasts starkly

with what used to be the standard approach , namely , stage models of

information processing (Sternberg , 1969) , and thereby offers a very
�

S Though some POP models use discrete binary units (e.g., Hinton , 1981a~ Hopfield ,
1982) , they generally use large numbers of these to represent any object , so that when a

few of the units that form part of a pattern are on , the pattern can be said to be partially
acti ve .
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different perspective on decision -making processes and the basic notion

of stages .

Graceful degradation with damage and information overload.
From the study of brain lesions and other forms of brain damage , it

seems fairly clear there is not some single neuron whose functioning is

essential for the operation of any particular cognitive process . While

reasonably circumscribed regions of the brain may play fairly specific

roles , particularly at lower levels of processing , it seems fairly clear that

within regions , performance is characterized by a kind of graceful degra-
dation in which the system ' s performance gradually deteriorates as more
and more neural units are destroyed , but there is no single critical point

where performance breaks down. This kind of graceful degradation is
characteristic of such global degenerative syndromes as Alzheimer 's

disease (cf . Schwartz , Marin , & Saffran , 1979) . Again , this is quite dif -

ferent from many serial symbol processing models in which the disrup -

tion of a single step in a huge program can catastrophically impact the

overall performance of the system . Imagine the operation of a com -

puter in which a particular instruction did not work . So long as that
instruction was not used , there would be no effect on the system .

However , when that instruction was employed in some process, that

process simply would not work . In the brain it seems that the system is

highly redundant and capable of operating with a loss in performance

roughly similar in magnitude to the magnitude of the damage (see

Chapter 12 for details ) . This is a natural performance characteristic of
POP models .

Distributed , not central , control . There is one final aspect of our

models which is vaguely derived from our understanding of brain func -

tioning . This is the notion that there is no central executive overseeing

the general flow of processing. In conventional programming frame-
works it is easy to imagine an executive system which calls subroutines

to carry out its necessary tasks . In some information processing models
this notion of an executive has been carried over . In these models , all

processing is essentially top-down or executive-driven; if there is no
executi ve , then no processing takes place at all .

Neuropsychological investigation of patients with brain damage indi -
cates that there is no part of the cortex on whose operation all other

parts depend. Rather it seems that all parts work together, influencing
one another , and each region contributes to the overall performance of

the task and to the integration into it of certain kinds of constraints or
sources of information . To be sure , brainstem mechanisms control

vital bodily functions and the overall state of the system , and certain

parts of the cortex are critical for receiving information in particular
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modalities . But higher level functions seem very much to be character -
ized by distributed , rather than central control .

This point has been made most clearly by the Russian neuropsychol -

ogist Luria ( 1966; 1973) . Luria 's investigations show that for every
integrated behavioral function (e.g., visual perception, language
comprehension or production , problem solving , reading ) , many dif -

ferent parts of the cortex playa role so that damage to any part influ -

ences performance but is not absolutely crucial to it . Even the frontal

lobes , most frequently associated with executive functions , are not
absolutely necessary in Luria ' s view , in that some residual function is

generally observed even after massive frontal damage (and mild frontal

damage may result in no detectable symptomatology at all) . The fron -
tal lobes have a characteristic role to play, facilitating strategy shifts and
inhibiting impulsive responding, but the overall control of processing
can be as severely impaired by damage to parietal lobe structures that

appear to be responsible for maintaining organized representations that
support coordinated and goal -directed activity .

Our view of the overall organization of processing is similar to
Luria ' s . We have come to believe that the notion of subroutines with

one system "calling " another is probably not a good way to view the

operation of the brain . Rather , we believe that subsystems may modu-

late the behavior of other subsystems , that they may provide constraints

to be factored into the relaxation computation . An elaboration of some

aspects of these ideas may be found in Chapter 14.

Relaxation is the dominant mode of computation . Although there
is no specific piece of neuroscience which compels the view that brain -

style computation involves relaxation , all of the features we have just

discussed have led us to believe that the primary mode of computation

in the brain is best understood as a kind of relaxation system (cf .

Chapters 6, 7, 14, 15, and 21) in which the computation proceeds by

iteratively seeking to satisfy a large number of weak con~traints . Thus,
rather than playing the role of wires in an electric circuit , we see the

connections as representing constraints on the co-occurrence of pairs of

units . The system should be thought of more as settling into Q solution

than calculating a solution . Again , this is an important perspective

change which comes out of an interaction of our understanding of how

the brain must work and what kinds of processes seem to be required
to account for desired behavior .

As can be seen, this list does not depend on specific discoveries from

neuroscience . Rather , it depends on rather global considerations .

Although none of these general properties of the brain tell us in any

detail how the brain functions to support cognitive phenomena ,

together they lead to an understanding of how the brain works that
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serves as a set of constraints on the development of models of cogni -

tive processes. We find that these assumptions , together with those
that derive from the constraints imposed by the tasks we are trying to

account for , strongly influence the form of our models of cognitive
processes .

PD P Models Lack Neural Realism

On the one hand , it is sometimes said - as indicated in the previous
section - that there is little or no constraint to be gained through look -

ing at the brain . On the other hand , it is often said that we don ' t look

closely enough . There are many facts of neuroscience that are not fac-

tored directly into our models . Sometimes we have failed to capture
the fine structure of neural processing in our models . Other times we

have assumed mechanisms that are not known to exist in brains (see

Chapter 20) . One prominent example is the near -ubiquitous assump -
tion that units can have both excitatory and inhibitory connections

when it seems reasonably clear that most cortical units are either excita -

tory or inhibitory . If , as we argued above , it is important to understand
the microstructure of cognition , why do we ignore such detailed charac -

teristics of the actual physical processes underlying that microstructure ?

To be sure , to the extent that our models are directly relevant to

brains , they are at best coarse approximations of the details of neuro -

physiological processing . Indeed , many of our models are clearly
intended to fall at a level between the macrostructure of cognition and

the details of neurophysiology . Now , we do understand that some of

our approximations may have ramifications for the cognitive

phenomena which form our major area of interest ~ by missing certain
details of neurophysiology , we may be missing out on certain aspects of
brain function that would make the difference between an accurate

account of cognitive -level phenomena and a poor approximation . Our

defense is simply that we see the process of model building as one of

successive approximations . We try to be responsive to information from
both the behavioral and the neural sciences . We also believe that the

key to scientific progress is making the right approximations and the

right simplifications . In this way the structure can be seen most clearly .

This point is con ~idered further in Chapter 21.
We have been pleased with the structure apparent through the set of

approximations and simplifications we have chosen to make . There

are , however , a number of other facts from neuroscience that we have

not included in most of our models , but that we imagine will be impor -

tant when we learn how to include them . The most obvious of these is



the fact that we normally assume that units communicate via numbers.
These are sometimes associated with mean firing rates. In fact, of
course, neurons produce spikes and this spiking itself may have some
computational significance (see Chapters 7 and 21 for discussions of the
possible computational significance of neural spiking) . Another exam-
ple of possibly important facts of neuroscience which have not played a
role in our models is the diffuse pattern of communication which

occurs by means of the dispersal of chemicals into various regions of
the brain through the blood stream or otherwise. We generally assume
that communication is point -to-point from one unit to another. How-
ever, we understand that diffuse communication can occur through
chemical means and such communication may play an important role in
setting parameters and modulating the networks so that they can per-
form rather different tasks in different situations. We have employed
the idea of diffuse distribution of chemicals in our account of amnesia

(Chapter 25) , but , in general, we have not otherwise integrated such
assumptions into our models. Roughly, we imagine that we are study-
ing networks in which there is a fixed setting of such parameters, but
the situation may well be much more complex than that. (See Chapter
24 for some discussion of the role of norepinephrine and other neuro-
modulators.)

Most of our models are homogeneous with respect to the functioning
of our units . Some of them may be designated as inhibitory and others
as excitatory, but beyond that , they are rarely differentiated . We
understand that there are perhaps hundreds of kinds of neurons (see
Chapter 20) . No doubt each of these kinds playa slightly different role
in the information processing system. Our assumptions in this regard
are obviously only approximate. Similarly , we understand that there
are many different kinds of neurotransmitters and that there are dif -,
ferent systems in which different of these neurotransmitters are dom-
inant . Again, we have ignored this difference (except for excitatory
and inhibitory connections) and presume that as more is understood
about the information processing implications of such facts we will be
able to determine how they fit into our class of models.

It is also true that we have assumed a number of mechanisms that

are not known to exist in the brain (see Chapter 20) . In general, we
have postulated mechanisms which seemed to be required to achieve
certain important functional goals, such as, for example, the develop-
ment of internal representations in multilayer networks (see Chapter
8) . It is possible that these hypothesized mechanisms do exist in the
brain but have not yet been recognized. In that sense our work could
be considered as a source of hypotheses for neuroscience. It is also
possible that we are correct about the computations that are performed ,
but that they are performed by a different kind of neural mechanism
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than our formulations seem at first glance to suggest. If this is the

case, it merely suggests that the most obvious mapping of our models
onto neural structures is incorrect .

A neuroscientist might be concerned about the ambiguity inherent in
the fact that many of the mechanisms we have postulated could be
implemented in different ways. From our point of view, though, this is
not a serious problem. We think it useful to be clear about how our
mechanisms might be implemented in the brain, and we would certainly
be worried if we proposed a process that could not be implemented in
the brain. But since our primary concern is with the computations
themselves, rather than the detailed neural implementation of these
computations, we are willing to be instructed by neuroscientists on
which of the possible implementations are actually employed. This
position does have its dangers. We have already argued in this chapter
that the mechanism whereby a function is computed often has strong
implications about exactly what function is being computed. Neverthe-
less, we have chosen a level of approximation which seems to us the
most fruitful , given our goal of understanding the human information
processing system.

We close this section by noting two different ways in which PDP
models can be related to actual neurophysiological processes, apart from
the possibility that they might actually be intended to model what is
known about the behavior of real neural circuitry (see Chapters 23 and
24 for examples of models of this class) . First , they might be intended
as idealizations. In this approach, the emergent properties of systems
of real neurons are studied by idealizing the properties of the individual
neurons, in much the same way that the emergent properties of real
gasses can be studied by idealizing the properties of the individual gas
molecules. This approach is described at the end of Chapter 21. An
alternative is that they might be intended to provide a higher level of
description, but one that could be mapped on to a real neurophysiologi-
cal implementation . Our interactive activation model of word recogni-
tion has some of this flavor , as do most of the models described in
Chapters 14 through 19. Specifically with regard to the word recogni-
tion model, we do not claim that there are individual neurons that
stand for visual feature, letter , and word units , or that they are con-
nected together just as we proposed in that model. Rather, we really
suppose that the physiological substrate provides a mechanism whereby
various abstract informational states- such as, for example, the state in
which the perceptual system is entertaining the hypothesis that the
second letter in a word is either an H or an A - can give rise to other
informational states that are contingent upon them.
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Nativism vs. Empiricism

Historically , perceptron -like models have been associated with the

idea of " random self -organizing " networks , the learning of arbitrary

associations , very general , very simple learning rules , and similar ideas

which show the emergence of structure from the tabula rasa . We often

find , especially in discussion with colleagues from linguistics surround -

ing issues of language aquisition (see Chapters 18 and 19) , that PDP

models are judged to involve learning processes that are too general

and , all in all , give too little weight to innate characteristics of language

or other information processing structures . This feeling is brought out

even more by demonstrations that some PDP learning mechanisms are

capable of learning to respond to symmetry and of learning how to deal

with such basic perceptual problems as perceptual constancy under

translation and rotation (see Chapter 8) . In fact , however , PDP models

are, in and of themselves , quite agnostic about issues of nativism

versus empiricism . Indeed , they seem to us to offer a very useful per -

spective on the issue of innate versus acquired knowledge .

For the purposes of discussion let us consider an organism that con -

sists of a very large set of very simple but highly interconnected pro -

cessing units . The units are assumed to be homogeneous in their

properties except that some are specialized to serve as " input " units

because they receive inputs from the environment and some are spe-

cialized to serve as " output " units because they drive the effectors of

the system . The behavior of such a system is thus entirely determined

by the pattern of inputs , the pattern of interconnections among the

units , and the nature of and connections to the effectors . Note , that

interconnections can have various strengths - positive , negative , and

zero . If the strength of connection is positive , th ~n activity in one unit

tends to increase the activity of the second unit . If the strength of con -

nection is negative , then the activity in the first unit tends to decrease

the activity of the second unit . If the strength is zero , then activity of

the first unit has no effect on the activity of the second .

In such a system the radical nativism hypothesis would consist of the

view that all of the interconnections are genetically determined at birth

and develop only through a biologically driven process of maturation .

If such were the case, the system could have any particular behavior

entirely wired in . The system could be designed in such a way as to

respond differentially to human speech from other acoustic stimuli , to

perform any sort of computation that had proven evolutionarily adap-

tive , to mimic any behavior it might observe , to have certain stimulus

dimensions to which it was pretuned to respond , etc . In short , if all of

the connections were genetically predetermined , the system could
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perform any behavior that such a system of units , interconnections , and

effectors might ever be capable of . The question of what behaviors it
actually did carry out would presumably be determined by evolutionary

processes. In this sense, this simple POP model is clearly consistent

with a rabidly nativist world view .

The radical empiricist hypothesis , on the other hand , suggests that

there are no a priori limits on how the network of interconnections

could be constituted . Any pattern of interconnections is possible .
What determines the actual set of connections is the pattern of experi -

ences the system gets . In this sense there is no prior limit on the

nature of language ; any language that could be processed by such a net -
work could be learned by such an organism. The only limitations
would be very general ones due to the nature of the learning rule in the
system . With a sufficiently powerful learning rule , the organism could

organize itself into whatever state proved maximally adaptive . Thus ,
there would be no limitation on the degree to which the behavior of the

system could adapt to its environment . It could learn completely arbi -

trary associations . In short , if all connections in the system were

modifiable by experience , the system could learn to perform any
behavior at all that such a system of units , interconnections , and effec -

tors might ever be capable of . The question of what behaviors it actu -

ally did carry out would presumably be determined by the learning pro -
cess and the patterns of inputs the system actually experienced . In this

sense, the simple PDP model is clearly consistent with a rabidly empiri -
cist world view .

Obviously , it would be a straightforward matter to find a middle
ground between the radical nativist view and the radical empiricist view
as we have laid them out . Suppose , for sake of argument , that we have

an organism whose initial state is wholly determined genetically . Sup-

pose further that all of the connections were modifiable so that what -

ever the start state , any pattern of interconnections could emerge

through interaction of the organism with its environment .6 In such a
system as this we have , it seems to us , the benefits of both nativism

and empiricism . Like good nativists , we have given the organism a

starting point that has been selected by its evolutionary history . We

have not , however , strapped the organism with the rigid predetermin -

ism that traditionally goes along with the nativist view . If there are

6 Obviously both of these views are overstatements . Clearly the genes do not deter -

mine every connection at birth . Probably some sort of random processes are also

involved . Equally clearly , not every pattern of interconnectivity is possible since the spa-

tial layout of the neurons in the cortex , for example , surely limit the connectivity . Still ,

there is probably a good deal of genetic specification of neural connection, and there is a

good deal of plasticity in the pattern of connectivities after birth .
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certain patterns of behavior which , in evolutionary time , have proven

to be useful (such as sucking , reaching , or whatever ) we can build

them in , but we leave the organism free to modify or completely

reverse any of these behavioral predispositions .1 At the same time , we

have the best of the empiricist view - namely , we place no a priori lim -

itations on how the organism may adapt to its environment . We do ,

however , throw out the weakest aspect of the empiricist dogma -

namely , the idea of the tabula rasa (or totally random net ) as a starting

point . The organism could start at whatever initial state its evolutionary

history prepared it for .

Perhaps , at this stage, all of this seems painfully obvious . It seems

obvious to us too , and nevertheless , it gives us a new perspective on

the nativism lempiricism issue . The issue is not what is the set of

predetermined modules as some would suggest (cf . Fodor , 1983) . On

this view it seems quite reasonable , we submit , that to the degree that

there are modules , they are co-determined by the start state of the sys-

tem (the genetic predisposition ) and by the environment . (We take a

module to be roughly a set of units which are powerfully intercon-
nected among themselves and relatively weakly connected to units out -

side of the set ; of course , this concept admits all gradations of modu -

larity , just as our view of schemata allows all degrees of schematization

of knowledge .) There is, on this view , no such thing as "hardwiring ."

Neither is there any such thing as " software ." There are only connec -

tions . All connections are in some sense hardwired (in as much as they

are physical entities ) and all are software (in as much as they can be

changed .) Thus , it may very well be that there is a part of the network

prewired to deal with this or that processing task . If that task is not

relevant in the organism 's environment , that part of the network can be

used for something else. If that part of the network is damaged ,

another part can come to play the role "normally " carried out by the

damaged portion . These very properties have been noted characteristics

of the brain since Hughlings -Jackson ' s work in the late 19th century

(e.g., Jackson, 1869/ 1958) ; Jackson pointed them out as difficulties for
the strict localizationist views then popular among students of the brain .

Note too that our scheme allows for the organism to be especially sensi -

tive to certain relationships (such as the relationship between nausea

and eating , for which there might be stronger or more direct prewired

�

7 Here again , our organism oversimplifies a bit . It appears that some parts of the ner -

vous system - particularly lower level , reflexive , or regulatory mechanisms - seem to be

prewired and subject only to control by trainable modulatory connections to higher level ,

more adaptive mechanisms , rather than to be directly modifiable themselves ; for discus -

sion see Teitelbaum ( 1967) and Gallistel ( 1980) .



connections ) while at the same time allowing quite arbitrary associa-
tions to be learned .

Finally , it should be mentioned that all of the learning schemes that

have been proposed for networks of the sort we have studied are incre -

mental (cf . Chapters 7, 8, 11, 18, 19, and 25) , and therefore as an

organism moves from its primarily genetically predetermined start state

to its primarily environmentally determined final state , it will pass

through a sequence of more or less intermediate states . There will be a

kind of trajectory through the space of possible networks . This trajec -

tory will constitute the developmental sequence for the organism . To

the degree that different individuals share the same genetics (start

state ) and to the degree that their environments are similar , they will

pass through similar trajectories . It should also be said that since , in

PDP systems , what is learned is a product of both the current state of

the organism and the current pattern of inputs , the start state will have

an important effect on what is learned and the shape of the network

following any given set of experiences . However , the greater the

amount of experience , the more independent the system should be
from its start state and the more dependent it should be on the struc -
ture of its environment .

Of course , not all connections may be plastic - certainly , many sub-

cortical mechanisms are considerably less plastic than cortical ones .

Also , plasticity may not continue throughout life (see Chapter 24) . It

would , of course , be a simple matter to suppose that certain connec -
tions are not modifiable . This is an issue about which our framework

provides no answer . The major point is that there is no inconsistency

between prewired , innate knowledge , and mutability and adaptability .

We cannot resist making one more point about the

nativism / empiricism issue . This is that our PDP account of innate

knowledge seems to provide a rather plausible account of how we can
come to have innate " knowledge ." To the extent that stored knowledge

is assumed to be in the form of explicit , inaccessible rules of the kind

often postulated by linguists as the basis for linguistic competence (see
Chapter 18) , it is hard to see how it could " get into the head " of the
newborn . It seems to us implausible that the newborn possesses ela-

borate symbol systems and the systems for interpreting them required

to put these explicit , inaccessible rules to use in guiding behavior . On

our account , we do not need to attribute such complex machinery . If

the innate knowledge is simply the prewired connections , it is encoded

from the start in just the right way to be of use by the processing
mechanisms .
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Some have argued that since we claim that human cognition can be
explained in terms of POP networks and that the behavior of lower
animals such as rats can also be described in terms of such networks we

have no principled way of explaining why rats are not as smart as peo-
ple. Given all of the above, the question does seem a bit puzzling. We
are not claiming , in any way, that people and rats and all other organ-
isms start out with the same prewired hardware. People have much
more cortex than rats do or even than other primates do; in particular
they have very much more prefrontal and parietal cortex - more brain
structure not dedicated to input /output - and presumably, this extra
cortex is strategically placed in the brain to subserve just those func-
tions that differentiate people from rats or even apes. A case in point
is the part of the brain known as the angular gyrus. This part of the
brain does not exist even in chimpanzees. It sits at the intersection
between the language areas of the temporal lobe and the visual areas of
the parietal lobe, and damage to this area produces serious deficits in
language and in the mapping of words onto meanings. While it is pos-
sible that structures like the angular gyrus possess some special internal
wiring that makes them fundamentally different , somehow, in the kinds
of cognitive operations they perform , their cytoarchitecture is not
markedly different from that of other parts of the brain (see Chapters
20 and 21) . Thus it seems to us quite plausible that some of the differ -
ences between rats and people lie in the potentiality for forming con-
nections that can subserve the vital functions of language and thought
that humans exhibit and other animals do not .

But there must be another aspect to the difference between rats and
people as well . This is that the human environment includes other

people and the cultural devices that they have developed to organize
their thinking processes. Some thoughts on how we imagine these cul-
tural devices are exploited in higher forms of intelligent behavior are
presented in Chapter 14.

There may be cognitive scientists who accept some or all of what we
have said up to this point , but still feel that something is missing,
namely, an account of how we guide behavior using explicit , conscious
knowledge, how we reason from what we know to new conclusions
based on that knowledge, and how we find a path through a problem
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space through a series of sequential steps. Can parallel distributed pro-
cessing have anything to say about these explicit , introspectively acces-
sible, temporally extended acts of thinking ? Some have suggested that
the answer is no- that POP models may be fine as accounts for percep-
tion , motor control , and other low-level phenomena, but that they are
simply unable to account for the higher level mental processing of the
kind involved in reasoning, problem solving, and other higher level
aspects of thought .

We agree that many of the most natural applications of POP models
are in the domains of perception and memory (see, for example,
Chapters 15, 16, and 17) . However, we are convinced that these
models are equally applicable to higher level cognitive processes and
offer new insights into these phenomena as well . We must be clear,
though, about the fact that we cannot and do not expect POP models to
handle complex, extended, sequential reasoning processes as a single
settling of a parallel network . We think that POP models describe the
microstructure of the thought process, and the mechanisms whereby
these processes come, through practice, to flow more quickly and run
together into each other .

Partly because of the temporally extended nature of sequential
thought processes- the fact that they involve many settlings of a net-
work instead of just one- they are naturally more difficult to deal with ,
and our efforts in these areas are, as yet, somewhat tentative .
Nevertheless, we have begun to develop models of language processing
(Chapter 19) , language acquisition (Chapter 18) , sequential thought
processes and consciousness (Chapter 14) , and problem solving and
thinking in general (Chapters 6, 8, and 14) . We view this work as
preliminary , and we firmly believe that other frameworks provide addi-
tional , important levels of description that can augment our accounts,
but we are encouraged by the progress we have made in these areas and
believe that the new perspectives that arise from these efforts are suffi -
ciently provocative to be added to the pool of possible explanations of
these higher level cognitive processes. Obviously , the extension of our
explorations more deeply into these domains is high on our ongoing
agenda. We see no principled reasons why these explorations cannot
succeed, and every indication is that they will lead us somewhat further
toward an understanding of the microstructure of cognition .
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MANY MODELS OR JUST ONE?

Before concluding this chapter, some comment should be made
about the status of the various models we and other members of the
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POP research group offer throughout the book . As the title of the

book suggests , we understand our work as an exploration . We have

been impressed with the potential of POP models for changing our per -

spectives on the human information processing system . We have tried

to maintain the kinds of general principles outlined in this chapter , but

we have felt free to vary the details from application to application .

Sometimes the variations are due to the fact that certain features of the

models need to be elaborated to deal with certain phenomena but can

be suppressed for other phenomena . Other times , we have simply

made a different choice to explore a different part of the space of POP

models . We do not see ourselves capable as yet to produce the super -

model which would connect all of our areas of exploration together .

Rather , we feel that the POP framework which we are developing

forms a kind of metatheory from which specific models can be generated

for specific applications . The success of the particular models reflects

indirectly on the metatheory , but we feel that the proper approach is to

study detailed models of detailed applications while at the same time

keeping one eye on the bigger picture . Thus , we don ' t really have a

single model . Rather , we have a family of related models . In the best

of all worlds each of our specific models may turn out to be a rough

approximation to some unifying , underlying model as specialized to the

problem area in question . More likely , however , each represents an

exploration into a more or less uncharted region of the space of POP

models . Each application has lead to useful insights - both into the

phenomena under study and into the behavior of the specific versions

of the models used to account for them .

CONCLUSION

Some of the issues we have considered in this chapter are quite

specific to our particular enterprise , but in the main , they are more

general . They concern such questions as the scope of cognitive theory ,

the relation between levels , the Question of nature vs . nurture , and the

relevance of neural mechanisms to an analysis of cognition .

The present chapter has provided an overview of our views on a

number of these central questions . In so doing , it has also provided an

overview of the work that is described in the rest of the book , along

with some of the reasons for doing it . Indeed , in many ways the rest of

the book is our response to the issues we have touched on here . The

chapters in Part II seek ways to overcome the computational limitations

of earlier network models , and the chapters in Part III provide some of

the formal tools that are crucial in pursuing these kinds of goals . The
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chapters in Part IV address themselves to cognitive constructs and

attempt to redefine the cognitive structures of earlier theories in terms

of emergent properties of PDP networks . The chapters in Part V con -

sider the neural mechanisms themselves and their relation to the algo -
rithmic level that is the focus of most of the work described in Parts II

and IV .
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