
3 

A COMPARATIVE REVIEW 

OF SELECTED METHODS FOR 

LEARNING FROM EXAMPLES 

ABSTRACT 

Thomas G. Dietterich 
Stanford University 

Ryszard S. Michalski 
University of Illinois 

at Urbana-Champaign 

Research in the area of learning structural descriptions from examples is 
reviewed, giving primary attention to methods of learning characteristic descrip-
tions of single concepts. In particular, we examine methods for finding the 
maximally-specific conjunctive generalizations (MSC-generalizations) that cover 
all of the training examples of a given concept. Various important aspects of 
structural learning in general are examined, and several criteria for evaluating 
structural learning methods are presented. Briefly, these criteria include:: ( i) ade-
quacy of the representation language, (ii) generalization rules employed, (iii) 
computational efficiency, and (iv) flexibility and extensibility. Selected learning 
methods developed by Buchanan, et al., Hayes-Roth, Vere, Winston, and the 
authors are analyzed according to these criteria. Finally, some goals are sug-
gested for future research. 

3.1 INTRODUCTION 

3.1.1 Motivation and Scope of Chapter 

The purpose of this chapter is to introduce some of the important issues 
affecting the design of learning programs-particularly programs that learn from 
examples. This chapter begins with a survey of these issues. From the survey, 
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four criteria are developed for evaluating learning methods. The remainder of 
the chapter describes and evaluates five existing learning systems according to 
these criteria. 

We do not attempt to review all of the work on learning from examples 
(also known as learning by induction). Instead, we focus on one particular 
problem: the problem of learning structural descriptions from a set of positive 
training instances. Specifically, we survey methods for finding the maximally-
specific conjunctive generalizations (called MSC-generalizations) that charac-
terize a given class of entities. This is one of the simplest learning problems that 
has been addressed by AI researchers. The problem of finding MSC-
generalizations lends itself to comparative analysis because several different 
methods have been developed. This is unusual in current research on machine 
learning, which is currently investigating a wide variety of learning problems and 
learning methods. Particular methods reviewed in this chapter include those 
developed by Buchanan et al. [1971, 1976, 1978], , Hayes-Roth [1976a, 1976b, 
1977, 1978] Vere [1975, 1977, 1978, 1980], Winston [1970, 1975], and the au-
thors. This chapter is based on the article by Dietterich and Michalski [1981]. 

Before proceeding any further, let us explain our terminology. The chapter 
deals first of all with structural descriptions. Structural descriptions portray ob-
jects as composite structures consisting of various components. For instance, a 
structural description of a building could represent the building in terms of the 
floors, the wal1s, the ceilings, the hallways, the roof, and so forth, along with 
the relations that hold among these various components. Structural descriptions 
can be contrasted with attribute descriptions, which specify only global 
properties of an object. An attribute description of a building might list its cost, 
architect, height, total square-footage and so forth. No internal structure is 
represented. Attribute descriptions can be expressed using propositional 
logic-that is, null-ary predicates. I Structural descriptions, however, must be ex-
pressed in predicate logic. Each subcomponent is described globally using vari-
ables and unary predicates, and relations between components are expressed as 
k-ary predicates and functions.2 In this chapter, variables, predicates, and func-
tions are all referred to as descriptors. 

The second item of terminology that requires explanation is the notion of a 
maximal1y-specific conjunctive generalization. A conjunctive generalization is a 
description of a class of objects obtained by forming the conjunction (AND) of a 
group of primitive statements. For example, the class of houses might be 
described as the set of al1 objects such that: 

IThis is a slight simplification. With multi-valued attributes such as color, one must either create a 
separate predicate for each color or else employ some form of multiple-valued logic, such as VL1• 

2This is also a slight simplification. In principle, it is always possible to convert a structural 
description into a:n attribute description, but such a conversion kads to a combinatorial explosion in 
the number of attributes. 
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the number of floors is less than four AND the purpose of the 
building is to be used as a dwelling 

We write this symbolically as a VL l expression: 
[#-of-floors < 4] & [purpose-of-building = dwelling] 
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An example of a description that is not conjunctive is the definition of "not 
married for tax purposes" as: 

[marital status = single] V [marital status = married] [filing status = separate returns] 

This is a disjunctive description. 
A maximally-specific conjunctive generalization is the most detailed (most 

specific) description that is true of all of the known objects in the class. Since 
specific descriptions list many facts about the class, the maximally-specific con-
junctive generalization is the longest conjunctive generalization that still 
describes all of the training instances. 

Now that we have described the scope of this chapter, we introduce several 
issues that are important in learning from examples. From these issues, we will 
later develop four criteria for evaluating learning systems and apply these criteria 
to the comparison, of five existing learning methods. 

3.1.2 Important Aspects of Learning From Examples 

The process of inductive learning can be viewed as a search for plausible 
general descriptions (inductive assertions) that explain the given input data and 
are useful for predicting new data. In order for a computer program to formulate 
such descriptions, an appropriate description language must be used. For any set 
of input data and any non-trivial description language, a large number of induc-
tive assertions can be formulated. These assertions form a set of descriptions 
partially ordered by the relation of relative generality [Mitchell, 1977]. The min-
imal elements of this set are the most specific descriptions of the input data in 
the given language, and the maximal elements are the most general descriptions 
of these data. The elements of this set can be generated by starting with the 
most specific descriptions and repeatedly applying rules of generalization to 
produce more general descriptions. 

The view of induction as a search through a space of generalized descrip-
tions draws attention to the following aspects of learning: 

• Representation. What description language is employed for expressing the 
input examples and formulating the inductive assertions? What are the 
possible forms of assertions that a method is able to learn? What operators 
are used in these forms? 

• Type of description sought. For what purpose are the inductive assertions 
being formulated? What assumptions does the induction method make 
about the underlying process(es) that generated the data? 

• Rules of generalization. What kinds of transformations are performed on 
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the input data and intermediate descriptions in order to produce the induc-
tive assertions? 

• Constructive induction. Does the induction process change the description 
space; that is, does it produce new descriptors that were not present in the 
input events? 

• Control strategy. What is the strategy used to search the description 
space: bottom-up (data-driven), top-down (model-driven), or mixed? 

• General versus problem-oriented approach. Is the method oriented 
toward solving ,a general class of problems, or is it oriented toward 
problems in some specific application domain? 

We now discuss each of these aspects in more detail. 

3.1.3 Representation Issues 

Many representational systems can be used to represent events and 
generalizations of events-for example, predicate calculus, production rules, 
hierarchical descriptions, semantic nets, frames, and scripts. Much AI work on 
inductive learning (the exceptions include the AM system [Lenat, 1976], and 
work by Winston [1970]) has employed predicate calculus (or some closely re-
lated system), because of its well-defined syntax and semantics. (An important 
study of theoretical problems of induction in the context of predicate calculus 
was undertaken by Plotkin [1970, 1971].) 

The mere statement that some learning method "uses predicate calculus" 
does not tell us very much about that method. Most learning methods place fur-
ther restrictions on the forms of inductive assertions. For example, although a 
learning system might in principle be able to represent disjunctive descriptions, 
in practice it may have no mechanisms for actually discovering such descrip-
tions. One way to capture this distinction between "representable forms" and 
"learnable forms" is to indicate which operators can actually be used in each. 
The most common operators are conjunction (&), disjunction (V), exception, 
and the existential and universal quantifiers. 

3.1.4 Types of Descriptions 

Since induction is a search through a description space, one must specify 
the goal of this search-that is, one must provide criteria that define the goal 
description. These criteria depend upon the specific domain in question, but 
some regularities are evident. We distinguish among characteristic, discriminant, 
and taxonomic descriptions. 

A characteristic description is a description of a class of objects (or situa-
tions, events, and so on) that states facts that are true of all objects in the class. 
It is usually intended to discriminate objects in the given class from objects in all 
other possible classes. For example, a characteristic description of the set of all 
tables would discriminate any table from all things that are non-tables. In this 
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way, the description characterizes the concept of a table. The task of discover-
ing a characteristic description is a single-concept acquisition task (see Chapter 
4 of this book). Since it is impossible to examine all objects in a given class (or 
not in a given class), a characteristic description is usually developed by specify-
ing all characteristics that are true for all known objects of the class (positive 
examples). In some problems, negative examples (counterexamples) are avail-
able that represent objects known to be outside the class. Negative examples can 
greatly help to circumscribe the desired conceptual class. Even more helpful are 
counterexamples that are "near misses"-that is, negative examples that just 
barely fail to be positive examples (see Winston [1970, 1975]). 

A discriminant description is a description of a class of objects in the con-
text of a fixed set of other classes of objects. It states only those properties of 
the objects in the given class that are necessary to distinguish them from the ob-
jects in the other classes. A characteristic description can be viewed as an ex-
treme kind of discriminant description in which the given class is discriminated 
against infinitely many alternative classes. 

A taxonomic description is a description of a class of objects that sub-
divides the class into subclasses. In constructing such a description, it is as-
sumed that the input data are not necessarily members of a single conceptual 
class. Rather it is assumed that they are members of several different classes (or 
produced by several different processes). An important kind of taxonomic 
description is a description that determines a conceptual clustering-a structuring 
of the data into object classes corresponding to distinct concepts. Taxonomic 
descriptions can be "flat"-with all object classes stated at the same level of 
abstraction--or hierarchical-with object classes arranged in an abstraction tree. 
A taxonomic description is fundamentally disjunctive. The overall class is 
described by the disjunction of the subclass descriptions. Taxonomic description 
is a kind of descriptive generalization rather than concept acquisition (see Chap-
ter 4 of this book). 

Determination of characteristic and discriminant descriptions is the subject 
of learning from (pre-classified) examples, while determination of taxonomic 
descriptions (conceptual clustering) is the subject of learning from observation or 
"learning without teacher". This distinction between these two forms of learning 
is examined in detail in Chapter 4 of this book. 

In this chapter we restrict ourselves to the problem of determining charac-
teristic descriptions. The problem of determining discriminant descriptions has 
been studied by Michalski and his collaborators [Larson & Michalski, 1977; Lar-
son, 1977; Michalski, 1973, 1975, 1977, 1980a, 1980b] (see also Chapters 4 and 
15 of this book.). A general method and computer program, CLUSTERl2, for con-
ceptual clustering is described by Michalski and Stepp in Chapter 11 of this 
book. 
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3.1.5 Rules of Generalization 

The partially-ordered space of descriptions of different levels of generality 
can be described by indicating what transformations are being applied to change 
less general descriptions into more general ones. Consequently, determination of 
inductive assertions can be viewed as a process of consecutive application of cer-
tain "generalization rules" to initial and intermediate descriptions. A generaliza-
tion rule is a transformation rule that, when applied to a classification rule 
S1 ::> K, produces a more general classification rule S2 ::> K.3 
This means that the implication S1 S2 holds. A generalization rule is called 

selective if S2 involves no descriptors other than those used in Sj. If S2 does 
contain new descriptors, then the rule is called constructive (see section 3.1.6). 
Selective rules of generalization do not change the space of possible inductive 
assertions, while constructive rules do change it. 

The concept of rules of generalization provides further insight into the view 
of induction as a heuristic search of description space. The rules of generaliza-
tion specify the operators that the search uses to move from one node to another 
in this space. The concept of generalization rules is also useful for comparing 
different learning methods because these rules abstract from the particular 
description languages used in the methods. In this chapter, we briefly outline 
the concept of a generalization rule and present a few examples. Chapter 
4 presents a much more detailed discussion of the subject and an extensive list of 
generalization rules. 

One of the simplest generalization rules is the dropping condition rule, 
which states that to generalize a conjunction, you may drop any of its conjunc-
tive conditions. For example, the class K of "red apples" can be generalized to 
the class of all "apples" of any color by dropping the "red" condition. This can 
be written as: 

red(v) & apple(v) ::> K can generalize to apple(v) ::> K 

This is a selective rule of generalization because it does not introduce any 
new descriptors. An example of a constructive rule is the find extrema of partial 
orders rule. This rule augments a structural description by adding new descrip-
tors for objects that are at the end points of ordered chains. For example, in a 
description of a four-storey office building, we might have the statement that 
"the second floor is on top of the first floor, the third floor is on top of the 
second, and so on." The find extrema rule would generate the fact that "the first 
floor is the bottom-most and the fourth floor is the top-most floor." The "on top 
of' relations form an ordered chain. Symbolically, this is written as: 

ontop(f2,fl) & ontop(f3,f2) & ontop(f4,f3) 1< most-ontop(f4) & least-ontop(fl) 

3The notation SI ::> K means that all objects for which SI is true are classified as belonging to 
class K. 
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where the I < sign is interpreted as "can be generalized to". Other selective 
rules of generalization needed for this chapter include: 

• the turning constants to variables rule 
• the adding internal disjunction rule 

• the closing interval rule 
• the climbing generalization tree rule 

These rules are explained in Chapter 4 of this book. 
We also employ one rule of specialization. Any of the above rules of 

generalization can become rules of specialization by using them in reverse. 
However, one important rule of specialization is the introducing exception rule. 
It can be applied to a description in order to specialize it to take into account a 
counterexample. Suppose, for example, that a program is attempting to learn the 
concept of a "fish". Its initial hypothesis might be that a fish is anything that 
swims. However, it then is told about a dolphin that swims and breathes air but 
is not a fish. At this point, the program might guess that a fish is anything that 
swims and does not breathe air. This can be written as: 

current description: swims(v) ::> K 
> swims(v) & -breathes-air(v) ::> K 

negative example: swims(v) & breathes-air(v) ::> -K 

The I> sign is interpreted as meaning "can be specialized to". 

3.1.6 Constructive Induction 

As we have mentioned above, constructive induction is any form of induc-
tion that generates new descriptors not present in the input data. It is important 
for learning programs to be able to perform constructive induction, since it is 
well known that many AI problems cannot be solved without a change of 
representation. Many existing methods of induction (for example, [Hunt et al., 
1966; Hayes-Roth, 1976a, 1976b; Vere, 1975, 1980; Mitchell, 1977, 1978] ) do 
not perform constructive induction. We say that these methods perform selective 
induction, since the descriptors present in the generalizations produced by the 
program are selected from those present in the input data. 

There are several existing systems that perform some form of constructive 
induction. Soloway's BASEBALL system [Soloway, 1978], for example, applies 
several rules of constructive induction to convert raw snapshots of a simulated 
baseball game into high-level episode descriptions that can be generalized to dis-
cover such concepts as "run", "hit", and "out". In this system, the constructive 
induction takes place first, followed by selective induction. 

Larson's INDUCE-l system [Larson, 1977; Larson & Michalski, 1977], on 
the other hand, performs constructive and selective induction simultaneously. 
INDUCE-l implements the "find extrema of partial orders" rule of generalization 
described above, along with a few other constructive induction rules. New 
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descriptors are tested for discriminatory ability before they are added to all of the 
training instances. 

Unfortunately, most existing systems have not implemented constructive 
induction rules in any general way. Instead, specific procedures are written to 
generate the new descriptors. This is an important problem for future research. 
In Chapter 4 of this book, Michalski presents more rules of constructive induc-
tion. 

3.1.7 Control Strategy 

Induction methods can be divided into bottom-up (data-driven), top-down 
(model-driven), and mixed methods depending on the strategy that they employ 
during the search for generalized descriptions. Bottom-up methods process the 
input events one at a time, gradually generalizing the current set of descriptions 
until a final conjunctive generalization is computed: 

/G4 

G/
G

I
3 

/12 

G2 is the set of conjunctive generalizations of EI and E2 • G1 is the set of con-
junctive generalizations obtained by taking each element of G1_1 and generalizing 
it with E1• 

Methods described by Winston, Hayes-Roth, and Vere are reviewed in this 
chapter. Other bottom-up methods include the candidate elimination approach 
described by Mitchell [1977, 1978], the ID3 technique of Quinlan [1979a, 
1979b] (see also Chapter 15 of this book), and the Uniclass method described by 
Stepp [1970]. 

Top-down methods search a set of possible generalizations in an attempt to 
find a few "best" hypotheses that satisfy certain requirements. The two methods 
discussed in this chapter (Buchanan, et al. and Michalski) search for a small 
number of conjunctions that together cover all of the input events. The search 
proceeds by choosing as the initial working hypotheses some elements from the 
partially-ordered set of all possible descriptions. If the working hypotheses 
satisfy certain criteria, then the search haIts. Otherwise, the current hypotheses 
are modified by slightly generalizing or specializing them. These new 
hypotheses are then checked to see if they satisfy the termination criteria. The 
process of modifying and checking continues until the criteria are met. Top-
down techniques typically have better noise immunity and can be easily extended 
to discover disjunctions. The principal disadvantage of these techniques is that 
the working hypotheses must be checked repeatedly to determine whether they 
subsume all of the input events. 
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3.1.8 General versus Problem-oriented Methods 

It is a common view that general methods of formal induction, although 
mathematically elegant and theoretically applicable to many problems, are in 
practice very inefficient and rarely lead to any interesting solutions. This 
opinion has led certain workers to abandon (at least temporarily) work on general 
methods and concentrate on learning problems in some specific domains (for ex-
ample, Buchanan, et al. [1978] in chemistry or Lenat [1976] in elementary num-
ber theory). Such an approach can produce novel and practical solutions. On 
the other hand, it is difficult to extract general principles of induction from such 
problem-specific work. It is also difficult to apply such special-purpose 
programs to new areas. 

An attractive possibility for solving this dilemma is to develop methods 
that incorporate various general principles of induction (including constructive 
induction) together with mechanisms for using exchangeable packages of 
problem-specific knowledge. This idea underlies the development of the INDUCE 

programs [Larson, 1977; Larson & Michalski, 1977; Michalski, 1980a] and the 
Star methodology described by Michalski in Chapter 4 of this book. 

3.2 COMPARATIVE REVIEW OF SELECTED METHODS 

3.2.1 Evaluation Criteria 

The selected methods of induction are evaluated in terms of several criteria 
considered especially important in view of our discussion in Section 3.1. 

1. Adequacy of the representation language: The language used to represent in-
put data and output generalizations determines to a large extent the quality and 
utility of the output descriptions. Although it is difficult to assess the adequacy 
of a representation language out of the context of some specific problem, recent 
work in AI has shown that languages that treat all phenomena uniformly must 
sacrifice descriptive precision. For example, researchers who are attempting to 
build systems for understanding natural language prefer rich knowledge represen-
tations, such as frames, scripts, and semantic nets, to more uniform and less 
structured representations, such as attribute-value lists and PLANNER-style 
representations. Although languages with many syntactic forms do provide 
greater descriptive precision, they also lead to combinatorial increases in the 
complexity of the induction process. In order to control this complexity, a com-
promise must be sought between uniformity and richness of representational 
forms. In the evaluation of each method, a review of the operators and syntactic 
forms of each description language is provided. 
2. Rules of generalization implemented: The generalization rules implemented in 
each algorithm are listed. 
3. Computational efficiency: To get some approximate measure of computational 
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efficiency, we have hand simulated each algorithm on the test problem shown in 
Figure 3-2. In the simulation, we have measured the total number of times an 
inductive description was generated and the total number of times one inductive 
description was compared to another (or compared to a training instance). These 
provide good measures of computational effort, since generation and comparison 
of structural descriptions are expensive operations. We have also computed the 
ratio of the number of final descriptions output by the algorithm to the total num-
ber of descriptions generated by the algorithm. This provides a measure of over-
all efficiency, since a ratio of 1 indicates that every description generated by the 
algorithm was correct, while a ratio of 0 indicates that none of the generated 
descriptions were correct. 

Our evaluation of these induction methods is not based entirely on these 
numerical measures, however (particularly since they are derived from only one 
test problem). An additional value of the simulation is that it gives some general 
idea of how the algorithms behave and shows the kinds of descriptions that the 
algorithms are able to discover. The reader is admonished to treat the efficiency 
measurements as highly approximate. 
4. Flexibility and extensibility: Programs that can only discover conjunctive 
characteristic descriptions have limited practical application. In particular, they 
are inadequate in situations involving noisy data or in which no single conjunc-
tive description can describe the phenomena of interest. Consequently, as one of 
the evaluation criteria, we consider the ease with which each method could be 
extended to: 

• discover descriptions with forms other than conjunctive generalizations, for 
example, disjunctions and exceptions (see Section 3.1.4) 

• include mechanisms that facilitate the detection of errors in the input data 
• provide a general facility for incorporating externally-specified domain 

knowledge into the induction process as an exchangeable package 
• perform constructive induction 

Two sample learning problems will be used to explain these methods. The 
first problem (Figure 3-1) is made up of two examples (El and E2). Each ex-
ample consists of objects (geometrical figures) that can be described by: 

• attributes size (small or large) and shape (circle or square) 
• relationships ontop (which indicates that one object is above another) and 

inside (which indicates that one object lies inside another) 

The second sample problem (Figure 3-2) contains three examples of con-
structions made of simple geometrical objects. These objects can be described 
by: 

• attributes shape (box, triangle, rectangle, ellipse, circle, square, or 
diamond), size (small, medium, or large), and texture (blank or shaded) 

• relationships ontop and inside (the same as in the first sample problem) 
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EI E2 
Figure 3-1: Sample problem for illustrating representation languages. 

E I E2 E3 
Figure 3-2: Sample problem for comparing the performance of the methods. 

In each sample problem, the task is to determine a set of maximally-
specific conjunctive generalizations (MSC-generalizations) of the examples. No 
negative examples are supplied in either problem. In the discussion below, the 
first problem is used to illustrate the representational formalism and the 
generalization process implemented in each method. The second, more complex, 
problem is used to compare the computational efficiency and representational 
adequacy of each method. This comparison is based on a hand simulation of 
each method. 

3.2.2 Data-driven Methods: Winston, Hayes-Roth, and Vere 

3.2.2.1 Winston: Learning Blocks World Concepts 

Winston's well known work [Winston, 1970, 1975] deals with learning 
concepts that characterize simple toy block constructions. Although his method 
uses no precise criterion to define the goal description, the method usually 
develops MSC-generalizations of the input examples. The method assumes that 
the examples are provided to the program by an intelligent teacher who carefully 
chooses both the kinds of examples used and their order of presentation. The 
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program uses so-called "near miss" negative examples to rapidly determine the 
correct generalized description of the concept. A near-miss example is a nega-
tive example that differs from the desired concept in only one significant at-
tribute. Winston also uses the near-misses to develop "emphatic" conditions 
such as "must support" or "must not support". These Must- type descriptors in-
dicate which conditions in the concept description are necessary to eliminate 
negative examples. 

As Knapman has pointed out in his review of Winston's work [Knapman, 
1978], many parts of the exposition in Winston's thesis [Winston, 1970] and 
subsequent publication [Winston, 1975] are not entirely clear. Although the 
general ideas in the thesis are well-explained, the exact implementation of these 
ideas is difficult to extract from these publications. Consequently, our descrip-
tion of Winston's method is necessarily a reconstruction. We begin by discuss-
ing the knowledge representation employed by Winston. Then, we tum our at-
tention to his learning algorithm. 

A semantic network is used to represent the input events, the background 
blocks-world knowledge, and the concept descriptions generated by the program 
(see Figures 3-3 and 3-4). The representation is quite general although the im-
plemented programs appear to process the network in domain-specific ways (see 
Knapman [1978]; Winston [1970, page 196]). 

Nodes in the network are used for several different purposes. We will il-
lustrate these purposes by referring to the corresponding concepts in first-order 
predicate logic (FOPL). The first use of nodes is to represent various primitive 
concepts that are properties of objects or their parts (such as small, size, circle, 
shape). Nodes in this case correspond to constants in first-order predicate logic 
expressions. There is no distinction between attributes and values of attributes in 
Winston's network representation, and consequently, there is no representational 
equivalent of the one-argument predicates and functions of FOPL. 

Another use of nodes is to represent individual examples and their parts. 
Thus, in Figure 3-3, we have the node El and two nodes A and B that make up 
El. These can be regarded as quantified variables in predicate calculus. Dis-
tinct variable nodes are created for each training example. 

Labeled links connecting these nodes represent various binary relationships 
among the nodes. The links correspond to two-argument predicates. The first 
two uses of nodes as constants and variables, plus the standard use of links as 
predicates, constitute the basic semantic network representation used by Winston. 

There is, however, a third use of nodes. Each link type (analogous to a 
predicate symbol) is also represented in the network as a node. Thus, in ad-
dition to the numerous On-Top links that may appear in the network, there is an 
On-Top node that describes the link type On-Top and its relationship to other 
link types. For example, there might be a Negative-Satellite link that joins the 
On-Top node to the Beneath node. Such a link indicates that On-Top and 
Beneath are semantically opposite predicates. Similarly, there is a Must-be-
Satellite link connecting the Must-Be-On-Top node to the On-Top node. 
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__ ---HAS-AS-PART 
HAS-PROPERTY-OF 

ON-TOP 

BENEATH 

__ --I--",-_---A-KIND-OF 

Figure 3-3: Network representing example EI in Figure 3-1. 

All of the nodes in the network are joined into one generalization hierarchy 
through the A-Kind-Of links. This hierarchy is used to implement the climbing 
generalization tree rule. 

Now that we have described the network representation, we turn our atten-
tion to the learning algorithm. The learning algorithm proceeds in two steps. 
First, the current concept description is compared to the next example, and a 
difference description is developed. Then this difference description is processed 
to obtain anew, generalized concept description. Often, the second step results 
in several possible generalized concept descriptions. In such a case, one general-
ized concept is selected for further refinement and the remaining possibilities are 
placed on a backtrack list. The program backtracks when it is unable to consis-
tently generalize its current concept description. 

The first step of the algorithm (the development of the difference 
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A-KINO-OF 

Figure 3-4: Network representing example E2 in Figure 3-1. 

description) is accomplished by graph-matching the current concept description 
against the example supplied by the teacher, and annotating this match with com-
ment notes (C-NOTES). These C-NOTES describe conditions in the concept 
description and example that partially matched or did not match. Winston's 
description of the graph-matching algorithm is sketchy [Knapman, 1978; 
Winston, 1970, pages 254-263]. The algorithm apparently finds one "best" 
match between the training example and the current concept description. The 
method does not address the important problem of multiple graph sub-
isomorphisms, that is, the problem arising when the training example matches 
the current concept description in more than one way. This problem was ap-
parently avoided by assuming that the teacher will present training instances that 
can be unambiguously matched to the current concept description. 
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Once this match between the concept description and the example is ob-
tained, a generalized skeleton is created containing only those links and nodes 
that matched exactly. The C-NOTES are then attached to this skeleton. Each 
C-NOTE is a sub-network of nodes and links that describes a particular type of 
match. There are several types of C-NOTES corresponding to partially-matching 
or mismatching nodes and partially-matching or mismatching links. The dif-
ferent types are summarized in Table 3-1. In detail, there are the following 
types of C-NOTES: 

• For nodes: 

o Intersection C-NOTES indicate that two nodes match exactly. 
o A-Kind-of-Merge and A-Kind-Of-Chain C-NOTES indicate that two 

nodes match partially. The A-Kind-Of-Merge C-NOTE handles the 
case when two nodes are different but share a common A-Kind-Of 
link, for example, when square partially matches triangle (since they 
are both polygons). The A-Kind-Of-Chain C-NOTE handles the case 
when a node matches a more general node, for example, when 
square matches polygon. 

o Exit C-NOTES indicate that two nodes do not match at all . 

• For links: 

o Negative-Satellite-Pair C-NOTES indicate that two semantically op-
posite links mismatched, for example, Marries and Does-Not-Marry. 

o Must-Be-Satellite-Pair C-NOTES indicate that a normal link, such as 
Supports, matches an emphatic link, such as Must-Support. 

o Must-Not-Be-Satellite-Pair C-NOTES indicate that a normal link 
matches a Must-Not form of the same link. 

o Supplementary Pointer C-NOTES indicate that two links do not 
match at all. 

Table 3-1: Winston's C-NOTE Categories 

Node 

Link 

Match 
Intersection 

Partially match 
A-Kind-Of-Merge 
A-Kind-Of Chain 

Negative-Satellite-Pair 
Must-Not-Be-Satellite-pair 

Mismatch 
Exit 

Supplementary pointer 

The network diagram of Figure 3-5 shows the difference description that 
results from matching the two networks of Figures 3-3 and 3-4 to each other. 

The generalization phase of the algorithm is fairly simple. Each C-NOTE is 
handled in a way determined by the C-NOTE type and whether the example is a 
positive or negative training example. Winston provides a table that indicates 
what actions his program takes in each case [W.inston, 1970, pages 145-146]. 
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Figure 3-5: Difference description obtained by comparing EI and E2 from Figure 3-1 and annotat-
ing the comparison with two C-NOTES. 

Some C-NOTES can be handled in multiple ways. For positive examples, 
only one C-NOTE causes problems: the A-Kind-Of-Merge. In this case, the 
program can either climb the A-Kind-Of generalization tree or else drop the con-
dition altogether. The program develops both possibilities but only pursues the 
former (leaving the latter on the backtrack list). The concept description that 
results from generalizing the difference description of Figure 3-5 is shown in 
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Figure 3-6. The alternative generalization would drop the Has-Property link 
from node h. 

HAS-PROPERTY-OF 
HAS-AS-PART 

ON-TOP 

KIND-OF 

Figure 3-6: Network representing the generalized concept resulting from generalizing the dif-
ference description of Figure 3-5. 

Evaluation: 

1. Representational adequacy. The semantic network is used to represent 
properties, object hierarchies (using A-Kind-Of), and binary relationships. As in 
most semantic networks, n-ary relationships cannot be represented directly. The 
conjunction operator is implicit in the structure of the network, since all of the 
conditions represented In the network are assumed to hold simultaneously. There 
is no mechanism indicated for representing disjunction or internal disjunction. 
The Not and Must-Not links implement a form of the exception operator. An 
interesting feature of Winston's work is the use of the emphatic Must- relation-
ships. 
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The program works in a depth-first fashion and produces only one general-
ized concept description for any given order of the training examples. Permuting 
the training examples may lead to a different generalization. Two generaliza-
tions obtained by simulating Winston's learning algorithm on the examples of 
Figure 3-2 are shown in Figures 3-7 and 3-8. 

HAS-AS-PART ---;I'-"----.....q:'-------J", 

Figure 3-7: The first generalization obtained by simulating Winston's learning algorithm on the 
examples of Figure 3-2 (in the order E3, El, E2). An English paraphrase is: "There is 
a medium, blank polygon on top of another object that has a size and texture. There is 
also another object with size and texture." 

The second generalization (Figure 3-8) is not maximally specific since it 
does not mention the fact that all training examples also contain a small- or 
medium-sized shaded object. The algorithm cannot discover this generalization 
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, J-I----"Ioc-"7- HAS-PROPERTY -OF 

A-KINO-OF 

Figure 3-8: The second generalization obtained by simulating Winston's learning algorithm on the 
examples of Figure 3-2 (in the order EI, E2, E3). An English paraphrase is: "There is 
a large, blank object." 

due to the fact that the graph-matcher finds the "best" match of the current con-
cept with the example. When the order of presentation of the examples is El 
followed by E2 followed by E3, the "best" match of the first two examples 
eliminates the possibility of discovering the maximally-specific conjunctive 
generalization when the third example is matched. 
2. Rules of Generalization. The program uses the dropping condition rule (for 
generalizing exit C-NOTES), the turning constants to variables rule (when creat-
ing the generalized skeleton), and the climbing generalization tree rule (for the 
A-Kind-Of-Merge). It also uses the introducing exception specialization rule (for 
the A-Kind-Of-Merge C-NOTE with negative examples). 
3. Computational efficiency. The algorithm is quite fast: it requires only two 
graph comparisons to handle the examples of Figure 3-2. However, the algo-
rithm does use a lot of memory to store intermediate descriptions. The first 
graph comparison produces eight alternatives, of which only one is pursued. 
The second graph comparison leads to four more alternatives from which one is 
selected as the "best" concept description. This inefficient use of memory is 
reflected in our figure for computational efficiency (the number of output 
descriptions / the number of examined descriptions), which is 1111 or 9%. 
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The performance of the algorithm can be much worse in certain situations. 
When "poor" negative examples are used-those which do not match the current 
concept description well-the number of intermediate descriptions explodes com-
binatorially. Such situations are also likely to cause extensive backtracking. 

Since the algorithm produces only one generalization for any given order 
of the input examples, it must be executed repeatedly if several alternative 
generalizations are desired. 
4. Flexibility and Extensibility. Iba [1979] has successfully extended this algo-
rithm to discover some disjunctive descriptions. His solution is not entirely 
general, however. The main difficulty seems to be that Winston's algorithm 
operates under the assumption that there is one conjunctive concept characteriz-
ing the examples, so the development of disjunctive concepts is not consistent 
with the spirit of the work. 

Since the program behaves in a depth-first manner, noisy training events 
cause it to make serious errors from which it cannot recover without extensive 
backtracking. This is not surprising since Winston assumes that the teacher is 
intelligent and does not make any mistakes in training the student. It seems to 
be very difficult to extend this method to handle noisy input data. 

The inductive generalization portion of the program does not contain much 
problem-specific knowledge. However, many of the techniques used in the 
program, such as building complete difference descriptions and using a back-
tracking search, may become combinatorially infeasible in real-world problem 
domains. The A-Kind-Of generalization hierarchy can be used to represent 
problem-specific knowledge. 

The system of programs described by Winston performs some types of 
constructive induction. The original inputs to the system are noise-free line 
drawings. Some knowledge-based algorithms convert these line drawings into 
the network representation. Winston describes an algorithm for combining a 
group of objects into a single concept and subsequently using this concept in 
other descriptions. The "arcade" concept ( [Winston, 1970], page 183) is a good 
example of such a constructive induction process. 

3.2.2.2 Hayes-Roth: Program SPROUTER 

Hayes-Roth's work on inductive learning [Hayes-Roth, 1976a, 1976b; 
Hayes-Roth & McDermott, 1977, 1978] is concerned with finding MSC-
generalizations of a set of input positive examples (he calls such generalizations 
maximal abstractions or interference matches). Parameterized structural 
representations (PSR's) are used to represent both the input events and their 
generalizations. The PSR's for the two events of Figure 3-1 are: 

EI: {{circle:a}{square:b}{small:a} 
{small:b}{ontop:a, under:b}} 

E2: {{circle:c}{square:d}{circJe:e} 
{small:c }{large:d}{ small:e} 
{ontop:c, under:d}{inside:e, outside:d}} 


