
 

Copyright © 2003 American Psychological Society

CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 227

 

general properties might be. The
need for abstraction is especially
clear in the realm of category or
concept learning, the process of
learning categories from examples.
Here we are given a few exam-
ples—say, a straight-backed chair,
a plush armchair, and a three-legged
stool—from which we abstract or
generalize to form an impression of
the general category from which
the examples were drawn (

 

chairs

 

).
Despite centuries of inquiry into
this problem, and decades of ex-
perimental research, the underly-
ing mechanisms are not yet fully
understood.

Categories differ widely, of
course, in the ease with which peo-
ple can learn them from examples.
Some categories—for example,

 

chairs

 

—are easily guessed from few
examples. At the other extreme, ex-
tremely disjoint or heterogeneous
categories—say, an infinite set in-
cluding a hat, a piano, the sun, the
King of Sweden, . . .—are so incoher-
ent and seemingly irregular that it
seems no finite subset would suffice
to communicate the essence of the
category. Such a category can be ef-
fectively represented, it seems, only
by simply listing its contents ver-
batim: No regularities or common
trends hold sway. Such categories
are 

 

incompressible

 

, and indeed are
more difficult to learn from exam-
ples, as corroborated more formally
by experiments I summarize later.

 

SIMPLICITY

 

The principle of 

 

simplicity

 

, or
pars imony—that  one  should

choose the simplest hypothesis
consistent with the data—is one of
the most ubiquitous in all fields of
inference, including philosophy (as
Occam’s razor); in machine learn-
ing (under a variety of names, in-
cluding the “minimum description
length principle”); and in visual
perception (known by the Gestalt
term 

 

Prägnanz

 

, or the “minimum
principle”). The principle seems
particularly apt in the domain of
concept learning, where it would
dictate that we induce the simplest
category consistent with the ob-
served examples—the most parsi-
monious generalization available.

Yet, surprisingly, the idea of
complexity minimization plays
very little role in contemporary
theories of concept learning. Not-
withstanding several early propos-
als (in particular, Neisser & Weene,
1962), and some isolated strands in
more recent literature (Medin,
Wattenmaker, & Michalski, 1987;
Pothos & Chater, 2001), the cur-
rently dominant models do not in-
volve complexity minimization in
any way. One reason for this sur-
prising neglect is the historical
prominence of the dichotomy be-
tween conjunctive (

 

and

 

) and dis-
junctive (

 

or

 

) concepts, intensively
studied in the 1960s (see Bourne,
1970). Conjunctive and disjunctive
concepts are of equal complexity
by almost any conceivable metric.
Yet conjunctive concepts are easier
for subjects to learn, suggesting a
seemingly fundamental divergence
between logical complexity and

 

psycho

 

logical complexity.
More recently, the neglect of

complexity in concept learning has
stemmed from the ascendancy of

 

exemplar theories

 

 (e.g., Kruschke,
1992; Nosofsky, 1988). Exemplar
theories model concept learning
entirely via the storage of specific
instances or exemplars, with new
objects evaluated only with respect
to how closely they resemble spe-
cific known members (and non-
members) of the category. In such
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How do we learn concepts
and categories from examples?
Part of the answer might be that
we induce the simplest category
consistent with a given set of
example objects. This seem-
ingly obvious idea, akin to sim-
plicity principles in many fields,
plays surprisingly little role in
contemporary theories of con-
cept learning, which are mostly
based on the storage of exem-
plars, and avoid summarization
or overt abstraction of any kind.
This article reviews some evi-
dence that complexity minimi-
zation does indeed play a central
role in human concept learning.
The chief finding is that subjects’
ability to learn concepts de-
pends heavily on the concepts’
intrinsic complexity; more com-
plex concepts are more difficult
to learn. This pervasive effect
suggests, contrary to exemplar
theories, that concept learning
critically involves the extraction
of a simplified or abstracted gen-
eralization from examples.
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Generalizing from experience is
an essential aspect of everyday
mental life. But when we make a
finite number of observations of an
enduring phenomenon, there is no
strictly logical basis for forming any
firm generalizations about it. In-
stead, we must induce, that is,
make informed guesses, what its
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theories, there is, by design, no rep-
resentation of common tendencies
in the stored exemplars; only prop-
erties of individuals are represented,
without any overt generalization or
abstraction. In a very literal sense,
an exemplar model does not know
that 

 

water is wet

 

; it simply knows
that some (or one, or all) stored ex-
amples of 

 

water

 

 have the property

 

wet

 

. Hence, exemplar models may
be thought of as at the most ex-
treme philosophical contrast with
complexity-minimization theories;
whereas the latter emphasize the
extraction of useful regularities, the
former store examples without ex-
tracting any of the regularities that
bind them together.

In recent years, exemplar-based
theories have achieved great em-
pirical success (e.g., Kruschke, 1992;
Nosofsky, 1988). This success has
not been without controversy: For
example, some evidence suggests
that human learners use exemplar-
based strategies only early in learn-
ing, forming prototypes and gener-
alizations later. Recently, Smith and
Minda (2000) have argued that the
general empirical success of exem-
plar models is in part an artifact of
the historical choice of concepts
studied, most of which were cho-
sen from among the same few
types. But notwithstanding this dis-
agreement, one result of the domi-
nation of exemplar models in the
psychological literature has been a
deemphasis of the entire issue of
complexity in concept learning.
Occam plays no role in exemplar
storage.

 

BOOLEAN CONCEPTS

 

A common test bed for theories
of concept learning has been the
realm of Boolean concepts,  in
which concept membership is de-
termined by some combination of
simple binary features. Each of the
concepts extensively studied dur-

ing the 1960s is conveniently de-
picted in a two-dimensional grid,
in which each side represents one
Boolean feature, and members of
the concept are depicted by heavy
dots at the appropriate vertices (see
Fig. 1). For example, if the two fea-
tures were size (small or large) and
shape (square or circle), then the
possible objects could be depicted
by a grid in which the four vertices
would represent, respectively,
small squares, large squares, small
circles, and large circles. Then, for
example, the conjunctive concept

 

large squares

 

 would be represented
by a heavy dot at the large-square
vertex.

The concepts extensively stud-
ied during the 1960s included the
already-mentioned conjunctive
and disjunctive types (see Figs. 1a
and 1b), and several more exotic
varieties. A famous study by Shep-
ard, Hovland, and Jenkins (1961)
went further by considering con-
cepts with three features; each con-
cept could thus be depicted in a
three-dimensional cube (see Figs.
1c–1e). As can be seen in the figure,
such concepts exhibit a wider vari-
ety of structures, and they differ
greatly in their degree of learnabil-
ity. In the early 1970s, studies of this

kind of artificial logically defined
concept waned, as interest turned to
more graded and “fuzzy” models of
concepts. Yet the known variations
in subjective difficulty were never
satisfactorily explained. What makes
some concepts intrinsically more dif-
ficult to learn than others?

 

BOOLEAN COMPLEXITY

 

One answer to this question is
that learnability of concepts is
determined by their intrinsic com-
plexity. This hypothesis had, in
fact, been suggested by Neisser
and Weene (1962), but was poorly
received—in part because (as al-
ready mentioned) it failed to explain
the famous case of conjunction ver-
sus disjunction, two concepts that are
equally complex but differ in learn-
ability. Moreover, the idea may have
also failed to catch on because the
fundamental mathematical ideas
necessary to make the idea of “com-
plexity” completely clear had not
as yet been developed. Only a short
time later, however, three mathe-
maticians (Chaitin, Kolmogorov, and
Solomonoff, working indepen-
dently) put the mathematics of

Fig. 1. Concepts illustrated as diagrams in feature space. Each axis represents one bi-
nary feature, so each vertex represents one possible combination of values of the fea-
tures. For each concept, those combinations regarded as positive examples are
indicated by heavy black dots. Concepts may be defined over two features (a, b),
three features (c–e), or even more. Viewed this way, a concept may seem relatively
simple or relatively complex (e.g., consider c vs. d). For each concept, there exists a
complementary concept in which members and nonmembers have been inter-
changed (e.g., compare d and e). Because these two concepts have extremely similar
logical structure, they are regarded as two versions, or parities, of the same type; the
version with the smaller number of members is in up parity, and the other version is
in down parity.
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complexity—and simplicity—on a
firm foundation. They proposed that
complexity is, in essence, incom-
pressibility. More specifically, they
showed that the complexity of any
string of symbols can be understood
as the length of the shortest com-
puter program that expresses the
string (see Li & Vitányi, 1997). Sim-
ple strings can be expressed by
short programs, whereas complex
or random strings require long pro-
grams. The most complex case is a
string so lacking in pattern or order
that there is no better way to encode
it than simply to quote it verbatim,
so that the shortest program is
about as long as the string itself;
such a string is thus maximally ran-
dom or incompressible. This view
of complexity is now usually referred
to as Kolmogorov complexity. Mea-
suring Kolmogorov complexity
turns out to be a mathematically
sound way of capturing the intrin-
sic complexity of a string—the de-
gree to which it is inherently unor-
dered and unpatterned.

In the realm of Boolean con-
cepts, the natural analogue of Kol-
mogorov complexity is 

 

Boolean
complexity

 

, defined as the length of
the shortest logical expression that
is equivalent to the set of positive
examples (called the 

 

minimal for-
mula

 

). This length is usually de-
fined as the number (ignoring logi-
cal connectives) of variable names,
called literals. For example, imag-
ine that we are confronted by two
example objects: a big apple and
a small apple.  This set can be
thought of as a “logical formula:”

 

big apple or small apple

 

. This expres-
sion is logically equivalent to the
shorter formula 

 

(big or small) apple

 

,
which is, in turn, equivalent to the
even smaller formula 

 

apple

 

 (assum-
ing that everything is either big or
small). This maximally compressed
form has only one variable refer-
ence in it, so the concept has Bool-
ean complexity 1. By contrast, the
concept 

 

big apple or small orange

 

cannot be similarly reduced—it is

not equivalent to any shorter ex-
pression—so it has Boolean com-
plexity 4 (it mentions four variables:
big, apple, small, and orange). The
same reduction trick can be applied
to any Boolean concept, of any
length. After the concept has been
compressed as much as possible,
the length of the shortest formula
gives a measure of the concept’s in-
trinsic complexity.

 

A COMPREHENSIVE 
EXPERIMENT

 

So how does Boolean complex-
ity match up to the subjective diffi-
culty of concepts? Ideally, in order
to answer this question, one would
study as comprehensive a set of
concepts as possible. This has not
always been done, however. As I
mentioned earlier, with the notable
exception of Shepard et al. (1961),
studies in the 1960s almost exclu-
sively considered bivariate con-
cepts, which are severely limited
in variety, forming a poor basis
for generalization. Boolean concepts
come in a limited variety of in-
trinsic “shapes” in Boolean space.
For a given number of features and
number of positive examples, there

 

are really only a finite number of
logically distinguishable forms (see
Feldman, 2003, for a comprehen-
sive catalogue). In addition, each
concept comes in twin types, one
with a smaller (or equal) number of
members than nonmembers, the
other one complementary in its
membership. I refer to these as
concepts with 

 

up

 

 and 

 

down

 

 par-
ity, respectively (e.g., compare the
concepts illustrated in Figs. 1d and
1e). For example, the concepts 

 

birds

 

and 

 

nonbirds

 

 are logically very sim-
ilar, in that they both invoke the
same categorical distinction; 

 

birds

 

is the up-parity version, and 

 

non-
birds

 

 is the down-parity version.
In an attempt to achieve a more

exhaustive survey of concepts than
in earlier studies (Feldman, 2000), I
considered every distinguishable
Boolean concept that can be de-
fined with three or four binary fea-
tures and between two and four
positive examples (up versions), as
well as their complements (down
versions). The experiment sought
to estimate the psychological learn-
ability of each of these concept
types, determining for each con-
cept type the proportion of objects
correctly classified after a learning
session of fixed duration (see Fig.
2). The results are summarized in

Fig. 2. A sample learning screen as viewed by subjects in the concept-learning exper-
iment (Feldman, 2000). Subjects studied each screen for a given amount of time and
were then asked whether each object had been presented as an example or a non-
example. The concept shown has three features (triangle vs. circle, small vs. big,
white vs. black) and two positive examples, and is in up parity.
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Figure 3, which shows the effects
of both Boolean complexity and
parity. As the figure shows, success
in learning steadily decreased as
complexity increased, and the up
versions had a roughly constant
advantage over the down versions.

Thus, more complex concepts are
indeed harder to learn. Altogether,
Boolean complexity and parity ac-
counted for more than half the
variance in the data (

 

R

 

2

 

 

 

�

 

 .5017).
Two prominent exemplar models
(those of Kruschke, 1992, and
Nosofsky, 1988) did not fare as
well; each accounted for only about
a quarter of the variance (

 

R

 

2

 

 

 

�

 

.2062 and .2881, respectively). In-
triguingly, each of these exemplar
models, like the human subjects,
exhibited worsening performance
as complexity increased. Thus,
even though complexity minimiza-
tion is not an overt part of their
design, they are sensitive to com-
plexity epiphenomenally (i.e., as a
side effect). But their inferior fit to
the data shows that they are not

as severely affected by complexity
as human learners are; they learn
complex concepts too easily, and
penalize complexity too lightly.
Thus, it seems that the heavy em-
phasis on exemplar storage in cur-
rent theories is in need of reexami-
nation. Human learning involves a
critical element of compression or
complexity minimization that is
not present in exemplar models.

The main result of this experi-
ment—the complexity effect—points
to a kind of simplicity principle gov-
erning human learning. As we study
a set of examples, we attempt to en-
code them in as compact a manner
as possible. The more effectively the
examples can be compressed—the
lower the complexity—the more suc-
cessful this strategy will be, and the
more effectively the examples will
be remembered. Thus, human learn-
ers do indeed seek the simplest
generalization possible, as Occam
dictated.

The other result, the parity ef-
fect, suggests that subjects have some

kind of complexity-independent
preference for looking at concepts
through their positive examples. In-
deed, other researchers had noticed
the same tendency long before my
experiment (see Feldman, 2000, for
references). Noticing that parity and
complexity make independent con-
tributions to learning changes the
way older results—specifically, the
old conjunction/disjunction dichot-
omy—should be viewed. Conjunc-
tion and disjunction are actually the
same concept type in the appropri-
ate mathematical classification: Con-
junction is the up version and dis-
junction is the down version. For
example, the complement of the
conjunction 

 

small apple

 

 can be ex-
pressed as the disjunctive concept

 

nonsmall or

 

 

 

nonapple

 

. Thus, the criti-
cal difference between conjunctive
and disjunctive concept types does
not, after all, involve complexity,
but parity. The complexity effect is
inconspicuous when comparisons
are restricted to such simple bivari-
ate forms. But when a more ex-
haustive range of concept types is
tested, a substantial complexity ef-
fect turns out to be driving much of
the variance in subjective concep-
tual difficulty.

 

RULES VERSUS EXCEPTIONS

 

The idea of complexity minimi-
zation also sheds some light on
how rule formation and example
storage might relate and coexist.
The dichotomy between these two
styles of learning pervades cogni-
tive science (see Hahn & Chater,
1998, for discussion). Some theories
of concept learning have explicitly
combined them, including one
component for extracting rules and
another component for storing ex-
amples that do not fit into the rule
scheme. The idea of complexity
minimization brings the essential
distinction between rules and ex-
ceptions into sharper focus.

Fig. 3. Human performance on Boolean concepts plotted as a function of their Bool-
ean complexity. Results are shown separately for the up and down versions of each
concept. (From Feldman, 2000.)
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Some concepts, by their nature,
reduce to a very simple rule that
covers all their members (like 

 

red
things

 

). At the other extreme, some
concepts are totally irreducible (like
the one containing a hat, a piano,
the sun, and the King of Sweden),
meaning that their complexity is as
high as it can be. As I discussed ear-
lier, a maximally complex concept’s
minimal formula consists essen-
tially of a verbatim list of the con-
cept’s members. In between these
extremes are some concepts whose
minimal formulas have a compo-
nent (literally, a disjunct) that cov-
ers most of the objects plus one or
more additional objects (more dis-
juncts) that are not covered by the
“main rule.” An example might be
a collection of 27 red things plus a
banana. The additional object or
objects (e.g., the banana) are “ex-
ceptions,” in that they are not cov-
ered by the main part of the rule.
But they are in fact part of the rule
in that they are mentioned in the
full statement of the minimal for-
mula describing the concept. As
conceptual complexity increases,
concepts’ optimal representations
increasingly resemble explicit lists
of such exceptions.

This observation helps clarify
just what the word 

 

exception

 

 really
means. What is the intrinsic differ-
ence between rule-bound and ex-
ceptional parts of a concept? The
answer is that exceptions are ob-
jects that need to be represented
verbatim—listed explicitly—even
in the maximally compressed rep-
resentation of the concept. Any
such object is “intrinsically” excep-
tional in the context of that con-
cept. And the complexity of a con-
cept determines how intrinsically
exceptional the concept is—how
much of it consists of irreducible
items that need to be stored by rote.

This argument plainly suggests
that exemplar models might be
especially well suited to storing
highly complex concepts. Such
concepts cannot be captured by ex-

tracting their common regularities;
by definition, maximally complex
concepts do not 

 

have

 

 any common
regularities. Rather, the most effi-
cient way to store them is verba-
tim, item by item, exactly as exem-
plar models do. This is a direct
consequence of their high complex-
ity—in fact, it is essentially the 

 

defi-
nition

 

 of maximal complexity in
Kolmogorov’s sense. This point
underscores the validity of Smith
and Minda’s (2000) argument that
many of the highly complex four-
dimensional concepts studied in
the 1970s and 1980s unintention-
ally tilted the scales in the direction
of exemplar models.

 

CONCLUSION

 

I have argued that some kind of
simplicity principle is an essential
component of human learning.
However, complexity minimization
may be carried out through any
number of different ways of encod-
ing (i.e., codes or representation
languages). Complexity measure-
ments taken in one code tend to be
highly correlated with those taken
in other codes (see Li & Vitányi,
1997), so the empirical success of
one code does not necessarily
prove that it is the true code. The
code I used (Feldman, 2000) in my
minimal formulas (based on con-
ventional logical operators), and
the associated complexity-minimi-
zation techniques, are not particu-
larly psychologically plausible;
their basic role was simply to es-
tablish the prima facie role of com-
plexity, not to validate one particu-
lar code. Hence, an essential goal
for future research is to identify the
underlying “cognitive code” actu-
ally employed by human learners.

In more recent work (Feldman,
2001), I have proposed a more
sophisticated and psychologically
motivated code. My proposal is
based on the idea that inductive

concepts are expressed in terms of
the 

 

regularities

 

—that is, patterns in
the observed examples—that they
obey (Feldman, 1997). Representa-
tions of concepts are then built by
algebraic combinations of these
atomic concepts. Complexity can
be measured by the size of the
most compact representation of a
given concept in the algebra. Given
that the choice of atomic concepts
is psychologically motivated, is it
not surprising that this algebraic
complexity measure predicts hu-
man performance in my concept-
learning experiment (Feldman,
2000) more accurately than does
Boolean complexity (or any other
known model). Another important
step will be to extend the algebra
beyond features with a finite num-
ber of distinct values to cover
concepts defined over continuous
features (which have an infinite
spectrum of values—e.g., shape and
color; see Fass & Feldman, 2002, for
steps in this direction).

Another important direction for
future research will be to uncover
the details of processing, including
neural processing, by which com-
plexity minimization is actually
carried out in the brain. There have
been a number of recent advances
in understanding the neural mech-
anisms of concept learning, but
these have yet to be integrated
with the principle of complexity
minimization. This integration
may represent the flowering of one
of the oldest ideas in cognitive
science: that organisms seek to un-
derstand their environment by re-
ducing incoming information to a
simpler, more coherent, and more
useful form.

 

Recommended Reading

 

Chater, N., & Vitányi, P. (2003). Sim-
plicity: A unifying principle in
cognitive science? 

 

Trends in Cogni-
tive Sciences,

 

 

 

7

 

(1), 19–22.
Feldman, J. (2000). (See References)
Li, M., & Vitányi, P. (1997). (See Ref-

erences)



232 VOLUME 12, NUMBER 6, DECEMBER 2003

 

Published by Blackwell Publishing Inc.

 

Sober, E. (1975). 

 

Simplicity

 

. London:
Oxford University Press.

 

Acknowledgments—

 

I am grateful to Lyle
Bourne and Josh Tenenbaum for thought-
ful conversations. Preparation of this
manuscript was supported by National
Science Foundation Grant SBR-9875175.
Portions were presented as the 2002
George Miller Award address at the Au-
gust 2002 meeting of the American Psy-
chological Association, held in Chicago.

 

Note

 

1. Address correspondence to Jacob
Feldman, Department of Psychology and
Center for Cognitive Science, Rutgers
University–New Brunswick, 152 Frel-
inghuysen Rd., Piscataway, NJ 08854.

 

References

 

Bourne, L.E. (1970). Knowing and using concepts.

 

Psychological Review, 77

 

, 546–556.
Fass, D., & Feldman, J. (2002). Categorization un-

der complexity: A unified MDL account of
human learning of regular and irregular cate-
gories. In S. Becker, S. Thrun, & K. Obermayer
(Eds.), 

 

Advances in neural information processing
15

 

 (pp. 35–42). Cambridge, MA: MIT Press.
Feldman, J. (1997). The structure of perceptual cat-

egories. 

 

Journal of Mathematical Psychology, 41

 

,
145–170.

Feldman, J. (2000). Minimization of Boolean com-
plexity in human concept learning. 

 

Nature,
407, 6

 

30–633.
Feldman, J. (2001). 

 

An algebra of human concept learn-
ing

 

. Manuscript submitted for publication.
Feldman, J. (2003). A catalog of Boolean concepts.

 

Journal of Mathematical Psychology

 

, 

 

47

 

, 98–112.
Hahn, U., & Chater, N. (1998). Similarity and

rules: Distinct? exhaustive? empirically distin-
guishable? 

 

Cognition, 65

 

, 197–230.
Kruschke, J. (1992). ALCOVE: An exemplar-based

connectionist model of category learning. 

 

Psy-
chological Review, 99

 

, 22–44.
Li, M., & Vitányi, P. (1997). 

 

An introduction to Kol-

 

mogorov complexity and its applications

 

. New
York: Springer.

Medin, D.L., Wattenmaker, W.D., & Michalski,
R.S. (1987). Constraints and preferences in in-
ductive learning: An experimental study of
human and machine performance. 

 

Cognitive
Science,

 

 

 

11

 

, 299–339.
Neisser, U., & Weene, P. (1962). Hierarchies in

concept attainment. 

 

Journal of Experimental Psy-
chology, 64

 

, 640–645.
Nosofsky, R.M. (1988). Exemplar-based accounts of

relations between classification, recognition,
and typicality. 

 

Journal of Experimental Psychology:
Learning, Memory, and Cognition, 14

 

, 700–708.
Pothos, E.M., & Chater, N. (2001). Categorization

by simplicity: A minimum description length
approach to unsupervised clustering. In U.
Hahn & M. Ramscar (Eds.), 

 

Similarity and cate-
gorization

 

 (pp. 51–72). Oxford, England: Ox-
ford University Press.

Shepard, R., Hovland, C.L., & Jenkins, H.M.
(1961). Learning and memorization of classifi-
cations. 

 

Psychological Monographs: General and
Applied, 75

 

(13), 1–42.
Smith, J.D., & Minda, J.P. (2000). Thirty categoriza-

tion results in search of a model. 

 

Journal of Ex-
perimental Psychology: Learning, Memory, and
Cognition, 26

 

, 3–27.

 

When Good Pain Turns Bad

 

Linda R. Watkins

 

1

 

 and Steven F. Maier

 

Department of Psychology and Center for Neuroscience, University of Colorado at 

 

Boulder, Boulder, Colorado

 

Abstract

 

Classically, pain is viewed as
being mediated solely by neu-
rons. However, recent research
has shown that activated glial
cells (astrocytes and microglia)
within the spinal cord amplify
pain. These nonneuronal cells
play a major role in the creation
and maintenance of pathologi-
cal pain. Glia become activated
by immune challenges (viral or
bacterial infection) and by sub-
stances released by neurons
within the pain pathway. Acti-
vated glia amplify pain by releas-
ing proinflammatory cytokines.
Taken together, research find-
ings suggest a novel approach
to human pain control that tar-
gets glia. In addition, it is likely
that such glial-neuronal inter-
actions are not unique to pain,

but rather reflect a general rule
of sensory processing.
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One might envision that life
would be lovely without pain.
However, people born with a con-
genital insensitivity for pain bear
witness that this is not so. Such
people lean on hot stoves and real-
ize it only upon smelling their
burning flesh, fail to pull away
from sharp objects, and are un-
aware of bone breaks, infections, or
internal injuries, which become life
threatening as a result. They learn
only with great difficulty how to
survive in a world full of danger.

Pain is good. Normal, everyday
pain serves key biological func-
tions. First, pain is a warning de-
vice, helping to prevent tissue
damage. Pain signals carried by
sensory nerves to the spinal cord
trigger protective reflexes to rap-
idly withdraw your body from
danger. In turn, spinal cord neu-
rons relay the pain message to the
brain to organize adaptive behav-
iors, such as swatting an offending
bee. Second, pain serves a recuper-
ative function. After injury, pain mo-
tivates you to tend to the wound,
and to enter a period of inactivity
and behavior that will promote
healing. Thus, normal pain is highly
adaptive for survival.

 

PAIN IS DYNAMIC

 

But there is more to pain. Pain is
arguably the most dynamic of the
senses. It is not passively relayed
from the periphery of the body to
the brain. Rather, it is powerfully
modulated at the first synapse, at
which sensory nerves relay pain in-




