What is conceptual coherence?

- Prototype theory, exemplar theory, etc., don't really address the problem of conceptual coherence
- "Less coherent" concepts may be harder to classify
but all sets of examples have prototypes and exemplar representations!
- But what is conceptual coherence anyway?

Simplicity

I mean he'd keep telling you to unify and simplify all the time. Some things you can't $d o$ that to.

- Occam's razor - Holden Caulfield (J. D. Salinger)

Entities should not be multiplied without necessity - Occam
i.e. If there are multiple interpretations of the same data, choose the simplest one

- "When you hear hoofbeats, think horses not zebras" - Medical cliche
- But: Hickam's dictum: The patient can have as manv diseases as he damn well pleases

Why simplicity?

- Simplicity or parsimony is a widely used principle of scientific inference, without which much of modern science would not exist
- Until 1963, most philosophers believed that simplicity could not be universally quantified
- What seems simple in one "language" may seems complex in another
- But that ended in 1963 with Kolmogorov complexity

Kolmogorov complexity

- Kolmogorov, Chaitin, Solomonoff (1960s)

The complexity (randomness) of a string S is the length of the shortest computer computer program that generates S.

Examples:
$00=$ "Print 50 os" [11 characters]
01 = "Print 25 01s" [12 characters]
$11010110100001010111011111010001010110010010010111=$
"Print '11010110100001010111011111010001010110010010010111' [58 characters]
That is, simplicity is the degree to which something can be (faithfully, i.e. losslessly) compressed.

Conjunction and disjunction (again)

Shepard, Hovland \& Jenkins (1961)

I

II

III

IV

V

VI

- Complete classification of concepts with 3 features and 4 positive examples

Isomorphisms between concepts

III

Two isomorphic concepts are "essentially the same" concept

Shepard, Hovland \& Jenkins (1961)

Subjective difficulty ordering

- Complete classification of concepts with 3 features and 4 positive examples

Boolean Complexity

- The Boolean complexity of a propositional concept is the length (in variables) of the shortest propositional formula equivalent to it.
- Simple or regular concepts have low B-complexity
- Concepts with P objects on D features have B-complexity capped at DP
- The B-complexity is in a sense universal.
- Hence, B-complexity is a measure of the intrinsic logical complexity of the concept.

Boolean Complexity (examples)

Notation: $\quad a b$ means $a \wedge b \quad a+b$ means $a \vee b$

Shepard et al (1961), again

I <
$<$

IV
V
< VI

Minimal	a^{\prime}	$a b+a^{\prime} b^{\prime}$	$a^{\prime}(b c)^{\prime}+$	$a^{\prime}(b c)^{\prime}+$	$a^{\prime}(b c)^{\prime}+$	$a\left(b^{\prime} c+b c^{\prime}\right)+$
formula		$a b^{\prime} c$	$a b^{\prime} c^{\prime}$	$a b c$	$a^{\prime}\left(b c+b^{\prime} c^{\prime}\right)$	

Boolean
complexity

1
4
6
6
6
10

The $\mathrm{D}[\mathrm{P}]$ hierarchy

$3[2]$

 All distinct types of concepts with D features and P positives

 4[4]

Results

Separated by family

Separated by parity

Overall

Boolean complexity (literals)

