Concept formation as induction

Fit the data
Overfit the data?

Oververfitting and underfitting in induction

- Rome has a subway
-> Rome has a subway
- Rome, Venice have subways ->
-> All Italian cities have subways
- Rome, Venice, Paris have subways
-> All cities beginning with R, V or P have subways [a natural kind?]
-> All European cities have subways [a compositional concept]
- Rome, Venice, Paris, New York have subways
-> All cities have subways
- But Saint-Jeannet, France does not have a subway
-> All large European cities have subways
- ...etc.

Natural kinds

- But can you induce "large European cities" as a concept with stable properties?
- This is a complex compositional concept
- Does its properties follow from its constituent elements?
- Is it a natural kind?
- i.e. a stable phenomenon of the world as it exists, with consistent properties
- We seek to "carve nature at its joints"

Puzzles of induction

- Hume's problem

The basic problem of induction

- Hempel's paradox

All ravens are black ($\forall x$ raven $(x) \rightarrow$ black (x)),
is logically equivalent to
All non-black things are non-ravens
($\forall x \sim \operatorname{black}(x) \rightarrow \sim \operatorname{raven}(x))$

- So a white swan confirms the generalization as much as a black raven
- Goodman's problem ("grue/bleen")

Grue and Bleen (Goodman, 1955)

Grue $=\left\{\begin{array}{ll}\text { Green }<\text { time } t & \text { Blue }<\text { time } t \\ \text { Blue } \geq \text { time } t & \text { Green } \geq \text { time }\end{array}\right\}=$ Bleen
Green $=\left\{\begin{array}{ll}\text { Grue }<\text { time } t \\ \text { Bleen } \geq \text { time } t & \text { Bleen }<\text { time } t \\ \text { Grue } \geq \text { time } t\end{array}\right\}=$ Blue

Grue and bleen are no more complex than green and blue

The Ugly Duckling theorem (Watanabe)

- A feature is a subset of objects
- But all objects in a set have the same number of features in common with other sets!

Male vs Female Married couples

Weasleys vs not

- Therefore all objects are equally similar to all other objects (share the same number of features).
\rightarrow You have to place constraints on what counts as a "feature," or categories are meaningless

