Mu name is Mike Gentile. (yah can call me "Mike") mgentile @ physics.rutgers. edu

Physics 194 - Lecture $8^{\text {come! }}$
Have a question during class? Please ask it right away, even if it means interrupting in the middle f a thought. I want you to!

Agenda
Class

- Multi-device circuits
starts
- Circuit simplification + analysis

C2:15 pm

- Electrical systems in buildings

Analysis of the simplest circuit

Power
(A)

$$
\begin{aligned}
& P=I \Delta V \\
& (W=J / s) \\
& \Delta U_{\varepsilon}=\varepsilon \\
& \Delta U_{R}=I_{R} R
\end{aligned}
$$

(v)

$$
\sum_{\operatorname{loop}} \Delta V=0
$$

$$
\Delta V_{\varepsilon}+\Delta V_{R}=0
$$

$$
+\varepsilon-I R=0
$$

$$
I=\frac{\varepsilon}{R}=\frac{120 \mathrm{~V}}{72 \Omega}=1.67 \mathrm{~A}
$$

$$
P_{R}=I_{R} \Delta U_{R}=(1.67 \mathrm{~A})(1200)
$$

$$
=200 \mathrm{w}
$$

$$
P=I \Delta V=\left(\frac{\Delta U}{R}\right) \Delta V=\frac{\Delta V^{2}}{R}
$$

Joulels law
$=I(I R)=I I^{2} R \frac{1}{\text { Resistars aly }}$

$$
\begin{aligned}
& \xrightarrow[+]{+} \frac{\varepsilon=120 v}{I} \quad \sum_{100 p} \Delta V=0 \\
& \Delta V_{R_{2}}+\Delta V_{\varepsilon}+\Delta V_{R_{1}}=0 \\
& -I R_{2}+\varepsilon-I R_{1}=0 \\
& \rightarrow I=\frac{\varepsilon}{R_{1}+R_{2}}=\frac{120 V}{72 \Omega+144 \Omega}=0.86 \mathrm{~A} \\
& P_{R_{1}}=I_{R_{1}}^{2} R_{1}=\left(0.56_{0} A\right)^{2}(72 \Omega)=23 \mathrm{~W} \\
& P_{R_{2}}=I_{R_{2}}^{2} R_{2}=(0.56 \mathrm{~A})^{2}(144 \Omega)=45 \mathrm{~W} \\
& P_{R_{2}}=\frac{\left(\Delta V_{R_{2}}\right)^{2}}{R_{2}} \quad \Delta V_{R_{2}}=I_{R_{2}} R_{2}=(0.56 \mathrm{~A})(144 \Omega)=80 \mathrm{~V} \\
& \begin{aligned}
R_{2} \quad \Delta V_{R_{1}}=I_{R_{1}} R_{1}=(0.56 \mathrm{~A})(72 \Omega) & =40 \mathrm{~V} \\
=\frac{(80 \mathrm{~V})^{2}}{144 \Omega}=45 \mathrm{~W} & =120 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Parallel $\quad \varepsilon=120 \mathrm{~V}$
Kirchhoff's junction rule:

$$
\begin{aligned}
\sum I_{\text {in }} & =\sum I_{\text {ant }} \\
I_{\varepsilon} & =I_{1}+I_{2}
\end{aligned}
$$

$$
\sum \Delta U=0
$$

$$
\begin{aligned}
& \sum_{L_{1}} \Delta V=0 \rightarrow \Delta U_{\varepsilon}+\Delta U_{R_{1}}=0 \\
& +\varepsilon-I_{1} R_{1}=0 \rightarrow I_{1}=\frac{\varepsilon}{R_{1}}=\frac{120 U}{72 \Omega}
\end{aligned}
$$

LL

$$
=1.67 \mathrm{~A}
$$

$$
\begin{aligned}
& \Delta V_{\varepsilon}+\Delta U_{R_{2}}=0 \\
& P_{R_{1}}=I_{1}^{2} R_{1}=(1.67 A)^{2}(72 \Omega) \\
& +\varepsilon-I_{2} R_{2}=0 \\
& I_{2}=\frac{\varepsilon}{R_{2}}=\frac{120 \mathrm{~V}}{144 \Omega}=0.83 \mathrm{~A} \\
& I_{\varepsilon}=I_{1}+I_{2} \\
& =2.5 \mathrm{~A} \\
& P_{R_{2}}=I_{2}^{2} R_{2}=(0.83 \mathrm{~A})^{2}(144 \Omega)=100 \mathrm{~W}
\end{aligned}
$$

Simplify in parallel..

$$
\begin{array}{ll}
R_{23}=\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots\right)^{-1} & \\
<R_{2} \text { and } R_{3} & R_{123}=R_{1}+R_{23} \\
\begin{array}{ll}
\text { Parallel } & \\
R_{\text {eq }} & =\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots\right) \\
R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots
\end{array}
\end{array}
$$

