
CS 533: Natural Language Processing

Language Models, Beam
Search, Text Generation

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/33



Review: Word Embeddings

poodle

terrier

frog

||poodle− terrier||
� ||poodle− frog||

Text = Sequence of learnable word embeddings x1 . . . xT ∈ Rd

I Each xt not contextual

I Can be contextualized with additional transformations!

Once we’ve settled on (either raw or contextual) word embeddings, can
get a single-vector representation of text in various ways, e.g.,

I Mean pooling. Average embeddings (“continuous bag-of-words”)

I Max pooling. Take elementwise maximum (e.g., in CNNs)

I Single token. Take the embedding corresponding to a single token,
assuming it’s already function of all inputs (e.g., in transformers)

Karl Stratos CS 533: Natural Language Processing 2/33



Review: Contextualizing Word Embeddings

I Convolutional: Slide n-gram filters. Can be stacked.

I Recurrent: Maintain a recurrent state. Can be stacked and bidirectional.

I Self-attention: Compute a convex combination of all inputs. Can be stacked.

Karl Stratos CS 533: Natural Language Processing 3/33



Review: Parameters to Learn

I CNNs: Filter matrix U × Rn×d where n is the width of the
filter’s n-gram. Can’t model word ordering beyond filter sizes.
Stacking can enlarge the window size.

I RNNs: Parameters of the recurrent cell (feedforward)
RNNθ : Rdh × Rd → Rd. Variants to address gradient
problems (e.g., LSTMs). Can model arbitrarily long
sequences, but cannot be parallelized and one-sided (or
shallowly bidirectional)

I Transformers: Parameters of the multi-head attention layer
AttnHθ , which “split” inputs to heads and merge back. Deeply
bidirectional with stacking. Can be parallelized and made
sensitive to word ordering with position encodings, but tricky
to train with a large number of parameters.

Any of these encoders can be “plugged in” to optimize a
task-specific loss, jointly with any other layers (e.g., final linear
classifier)
Karl Stratos CS 533: Natural Language Processing 4/33



Architecture-Free Abstraction

In most cases we will work with the following uniform setting:

I Model. Classify x ∈ X into y ∈ {1 . . . L}

pθ(y|x) = softmaxy

(
W︸︷︷︸
L×d

encθ(x)︸ ︷︷ ︸
d×1

+ b︸︷︷︸
L×1

)

θ includes linear classifier parameters (W, b)

I Learning. Minimize the empirical cross-entropy loss assuming
N iid samples (xi, yi) ∼ pop

Ĵ(θ) = min
θ
− 1

N

N∑
i=1

log pθ(yi|xi)

No need to talk about specific architectures

Karl Stratos CS 533: Natural Language Processing 5/33



Review: Error Decomposition

all models

pop(y|x)

Hypothesis class F

pθ∗(y|x)

ap
pr

ox
.

With nonlinear neural encoders, approximation error ≈ 0

Karl Stratos CS 533: Natural Language Processing 6/33



Language Models (LMs)

I pop: Distribution over natural language X in some units
(e.g., sentences, paragraphs, articles). Will assume sentences.

I For convenience assume finite X : |X | = V Tmax where Tmax is
max text length storable in a physical computer

I But practically infinite

I x ∼ pop: Single sentence, randomly generated from the true
distribution (e.g., human reporter)

I Goal. Density estimation: learn pθ(x) ≈ pop(x). Use cases
I Ranking. Apply pθ to sentences to determine which sentences

are more likely (that is, under pop)
I Generation. Sample from pθ to generate sentences that may

be novel (not part of training data)

I Unsupervised problem: We don’t need any explicit
annotation to train an LM.

I Unlimited available corpora, many from the web (Wikipedia
dump: 3 billion tokens, Common Crawl (filtered): 410 billion
tokens)

Karl Stratos CS 533: Natural Language Processing 7/33



Chain Rule in Probability

I Direct softmax over X (space of all sentences) impractical

I Solution: Chain rule in probability (not to be confused with
chain rule in differentiation)

pop(x1 . . . xT ) = pop(x1|〈bos〉)
× pop(x2|〈bos〉, x1)
× pop(x3|〈bos〉, x1, x2)× · · ·
× pop(xT |〈bos〉, x1, x2, . . . , xT−1)
× pop(〈eos〉|〈bos〉, x1, x2, . . . , xT−1, xT )

〈bos〉 and 〈eos〉 special symbols in vocab V (“beginning/end
of sentence”)

I Thus only need a conditional word distribution over xt ∈ V
I Conditioning on history/context x<t ∈ V |x<t|

Karl Stratos CS 533: Natural Language Processing 8/33



Language Models Are Everywhere

Karl Stratos CS 533: Natural Language Processing 9/33



LM Training Loss

I Sample sentences denoted as x(1) . . . x(M) ∼ pop

I x(i) = (x
(i)
1 , . . . , x

(i)
Ti
), x

(i)
0 = 〈bos〉, x(i)Ti+1 = 〈eos〉

I Let N =M +
∑M
i=1 Ti, total number of token predictions

I Empirical cross-entropy loss (token-level):

Ĵ(θ) = − 1

N

M∑
i=1

Ti+1∑
t=1

log pθ(x
(i)
t |x

(i)
<t)

where x
(i)
<t = (x

(i)
0 , . . . , x

(i)
t−1) ∈ Vt.

I Data-efficient: T + 1 “labeled examples” in each sentence

(inputs, targets) = ((x0, x0:1, . . . , x0:T ), (x1, x2, . . . , xT+1))

I In practice sentences batched with special padding symbol
〈pad〉 to have equal length T .

I Mask 〈pad〉 losses: (l1, l2, l3, l4, l5) 7→ (l1, l2, l3, 0, 0)
Karl Stratos CS 533: Natural Language Processing 10/33



Perplexity

I Language modeling is unsupervised (i.e., no downstream
performance to monitor)

I Model selection based on validation cross-entropy loss
I If overfitting, validation loss will start increasing
I If training corpus is enormous, no model selection is necessary

(cannot even do a single epoch)

I Popular practice: exponentiate LM loss for interpretability

̂Perplexity(θ) = exp
(
Ĵ(θ)

)
(Assuming natural log in Ĵ .) Why?

I Ĵ(θ): Number of bits to encode the behavior of pop(xt|x<t)
using pθ(xt|x<t)

I exp(Ĵ(θ)): “branching factor” or “effective vocab size”

Karl Stratos CS 533: Natural Language Processing 11/33



Values of Perplexity

I True (token-level) cross-entropy loss

J(θ) = E
x∼pop, t∼Unif{1,...,|x|+1}

[− log pθ(xt|x<t)]

I Largest when pθ uniform: J(θ) ≤ log V
I Smallest when pθ = pop: J(θ) ≥ H(pop(xt|x<t))

I Thus range of true perplexity exp (J(θ)) is

Perplexity(θ) ∈ [exp(H(pop(xt|x<t))︸ ︷︷ ︸
True branching factor under pop

, V︸︷︷︸
branching factor of random tokens

]

I Range of empirical perplexity on finite training data

̂Perplexity(θ) ∈ [ 1︸︷︷︸
Model assigns probability 1 to every training instance

, V ]

Karl Stratos CS 533: Natural Language Processing 12/33



Markov Assumption

I Inconvenient to work with arbitrarily long context x<t (unless
we’re using recurrent models)

I Markov assumption: Threshold context size to K, e.g.,
K = 2

pop(x1 . . . xT ) ≈ pop(x1|〈bos〉0, 〈bos〉)
× pop(x2|〈bos〉, x1)
× pop(x3|x1, x2)× · · ·
× pop(xT |xT−2, xT−1)
× pop(〈eos〉|xT−1, xT )

I Idea: Choice of current word depends on recent history only

I Now LM just a classifier from RKd (K word embeddings) to V

Karl Stratos CS 533: Natural Language Processing 13/33



Tying Word Embeddings and Linear Classifier

I Regardless of encoder specifics, we have
I Word embeddings E ∈ Rd×V
I Linear classifier weight matrix W ∈ RV×d

I Instead of having separate parameters we can reuse W = E>

pθ(xt|x<t) = softmaxxt
(
E>︸︷︷︸
V×d

encθ(E(x<t))︸ ︷︷ ︸
d×1

)
This assumes encθ produces a d-dimensional hidden state.

I Halves the number of parameters for these weights
2V d 7→ V d

I Can be viewed as regularization
I Empirically almost always helps (easier to train, lower final

perplexity)

Karl Stratos CS 533: Natural Language Processing 14/33



Example: Bengio et al. (2003)

I A Neural Probabilistic Language Model: One of the few
successful early works on deep learning for NLP

I Simple feedforward network with a residual connection:

pθ(xt|xt−K . . . xt−1) = softmaxxt(W tanh(Ux+ a) + b+Qx)

where x ∈ RKd concatenates context word embeddings and
parameters W,U,Q, a, b are appropriately shaped

I Improvement over traditional LMs (not neural), test perplexity
on the Brown corpus with V = 16383:

I Kneser-Ney back-off (classical LM): 321
I Class-based back-off (another classical LM): 312
I Feedforward (K = 4, d = 30, hidden dimension 100): 252

Karl Stratos CS 533: Natural Language Processing 15/33



Example: Generative Pre-Training (GPT) LMs

I A series (GPT-1, GPT-2, . . .) of transformer-based LMs with
a lot of media attention

I Transformer encoder, with learnable position embeddings and
input-output weight sharing

pθ(xt|xt−K . . . xt−1) = softmaxxt(E
>Transformerθ(E(xt−K . . . xt−1)))

I Game of scale (many versions within each, showing largest)
I GPT-1: 117m parameters (12 layers, 12 heads, d = 768),

batch size 64 of length 512
I GPT-2: 1.5b parameters (48 layers, d = 1600, etc.), batch size

512 of length 1024
I GPT-3: 175b parameters (96 layers, 96 heads, d = 12288)

I GPT-2 and 3 vocabulary: based on byte-pair encoding (BPE)
tokenization (V = 50257), language-agnostic

Karl Stratos CS 533: Natural Language Processing 16/33



GPT-3 Training Data (Brown et al., 2020)

I Different types of text (web, books, Wikipedia), given
different priorities (e.g., Wikipedia modeling is emphasized)

I Heavy text preprocessing efforts: automated filtering (train a
classifier to identify high quality documents), approximate
deduplication

I Single mini-batch contains 3.2m tokens
I LM makes 3.2 million predictions in every batch during training

Karl Stratos CS 533: Natural Language Processing 17/33



Recurrent LMs

I Markov assumption can be limiting.

The man, after pondering for a long while [...> K tokens...]
decided that [he/she]

I Solution: Recurrent LM

pθ(xt|x<t) = softmaxxt(E
>RNNθ(ht−1, E(xt)))

ht−1 is a function of all history carried by the RNN
I Making LM recurrent may not help if context window is

already large (e.g., GPT-3 uses K = 2048 tokens)
I Few tokens with extreme-length dependence
I But these are the truly hard/interesting instances! (E.g.,

dependence between book chapters)

I How can we train RNNs with unbounded lengths?
I Heuristic: Truncate sequence and build computation graphs

sequentially, reusing previous hidden states without
backpropagating

I This trick is known as “backpropagation through time”
Karl Stratos CS 533: Natural Language Processing 18/33



Backpropagation Through Time (BPTT)

I Initial computation graph (BPTT length 3)

h1

x1

h2

x2

h3

x3 x4 x5 x6 x7

I Next computation graph

x1 x2 x3 x4 x5 x6 x7

h3 h4 h5 h6

I Memory consumption is BPTT length, but can propagate
information from arbitrarily far past

I Can be also used to make transformer-based LMs recurrent

Transformer-XL (Dai et al., 2019)

Karl Stratos CS 533: Natural Language Processing 19/33



Token-Level Perplexity on Penn Treebank (PTB) Corpus

A preprocessed version of PTB popular for small-scale LM
experiments (≈ 1 million training tokens, vocab size 10000)

I Kneser-Ney (classical LM) with cache: 125.7

I Simple feedforward: 140.2

I Simple RNN (BPTT length 50) (Mikolov and Zweig, 2012): 124.7

I LSTM (Bai et al., 2018): 78.93

I Transformer-XL (Dai et al., 2019): 54.55

I GPT-2∗ (Radford et al., 2019): 35.76

I GPT-3∗ (zero-shot) (Brown et al., 2020): 20.5

∗ indicates the model is trained on (a huge amount of) additional
text first. “Zero-shot” means the model is not additionally trained
on PTB.

Karl Stratos CS 533: Natural Language Processing 20/33



Beyond Perplexity

I Majority of words determined by local context
I Model can assign low perplexity on an unnatural text that is

locally coherent but globally gibberish

I Reading comprehension: Test overall context understanding
I Examples: CNNDM (Hermann et al., 2015), LAMBADA (Paperno et al., 2016)

Many locally plausible choices (e.g., “married”, “divorced”,
“graduated”)

I Nonetheless, truly minimizing perplexity will imply global
understanding

I Only diminishing returns since most tokens are resolvable
without global understanding

I LAMBADA accuracy 0% with LSTM, 86.4 (!) with GPT-3

Karl Stratos CS 533: Natural Language Processing 21/33



The Search Problem

I What’s the most likely sentence under the (trained) model?

x∗ = argmax
x1...xT∈VT , T∈{1...Tmax}

T+1∑
t=1

log pθ(xt|x<t)

I Greedy decoding. Predict argmax at each time step while
holding previous predictions fixed:

x̂1 = argmax
x1∈V

log pθ(x1|x0)

x̂2 = argmax
x2∈V

log pθ(x̂1|x0) + log pθ(x2|x̂1)

and so on until x̂T = 〈eos〉. Return x̂ = (x̂1 . . . x̂T ).

I Runtime linear in V : O(V Tmax). But is x̂ = x∗?

Karl Stratos CS 533: Natural Language Processing 22/33



The Search Problem

I What’s the most likely sentence under the (trained) model?

x∗ = argmax
x1...xT∈VT , T∈{1...Tmax}

T+1∑
t=1

log pθ(xt|x<t)

I Greedy decoding. Predict argmax at each time step while
holding previous predictions fixed:

x̂1 = argmax
x1∈V

log pθ(x1|x0)

x̂2 = argmax
x2∈V

log pθ(x̂1|x0) + log pθ(x2|x̂1)

and so on until x̂T = 〈eos〉. Return x̂ = (x̂1 . . . x̂T ).

I Runtime linear in V : O(V Tmax). But is x̂ = x∗?

Karl Stratos CS 533: Natural Language Processing 22/33



General Intractability of Exact Search

I Example: V = {a, b}, assume T = 2 always so
X = {aa, ab, ba, bb} (omitting 〈bos〉 and 〈eos〉)

pθ(a) = 0.6 pθ(a|a) = 0.5 pθ(b|a) = 0.5

pθ(b) = 0.4 pθ(a|b) = 0.9 pθ(b|b) = 0.1

Greedy decoding: aa or ab (prob 0.3), x∗ = ba (prob 0.36)

I We never know how the future unfolds.
I Even if a choice looks suboptimal now, it may eventually lead

to better sequences.

I In general, we cannot avoid an exhaustive search over all
O(V Tmax) possible sequences to find x∗.

I This is largely because xt can arbitrarily condition on the
entire history x>t.

I If distribution is Markov pθ(xt|x>t) = pθ(xt|xt−K . . . xt−1),
there exists a dynamic programming approach to find x∗ in
O(V KTmax) (will cover later in the course).

Karl Stratos CS 533: Natural Language Processing 23/33



General Intractability of Exact Search

I Example: V = {a, b}, assume T = 2 always so
X = {aa, ab, ba, bb} (omitting 〈bos〉 and 〈eos〉)

pθ(a) = 0.6 pθ(a|a) = 0.5 pθ(b|a) = 0.5

pθ(b) = 0.4 pθ(a|b) = 0.9 pθ(b|b) = 0.1

Greedy decoding: aa or ab (prob 0.3), x∗ = ba (prob 0.36)
I We never know how the future unfolds.

I Even if a choice looks suboptimal now, it may eventually lead
to better sequences.

I In general, we cannot avoid an exhaustive search over all
O(V Tmax) possible sequences to find x∗.

I This is largely because xt can arbitrarily condition on the
entire history x>t.

I If distribution is Markov pθ(xt|x>t) = pθ(xt|xt−K . . . xt−1),
there exists a dynamic programming approach to find x∗ in
O(V KTmax) (will cover later in the course).

Karl Stratos CS 533: Natural Language Processing 23/33



Approximate Search

I While exact search is intractable, we can approximate it
effectively by beam search.

I Has a controllable hyperparameter β (beam size)
I β = 1: Greedy decoding
I β = V Tmax : Exact search

I Idea: Maintain only the top β candidate sequences (called
“hypotheses”) at each time step.

I t = 1: Hypotheses (h(1) . . . h(β)) are simply words with
highest log pθ(x1|〈bos〉) values

I t = 2: Construct a stepwise hypothesis space of size βV

H2 =
{
h(b)x2|b ∈ {1 . . . β} , x2 ∈ V

}
Update hypotheses to be the top β elements of H2, each has
score log pθ(h

(1)|〈bos〉) + log pθ(x2|〈bos〉, h(1))
Karl Stratos CS 533: Natural Language Processing 24/33



General Beam Search

I Assumption: Additive sequence score (e.g., log prob)

s(x1 . . . xt) = s(x1) + s(x2|x1) + · · ·+ s(xt|x1 . . . xt−1)

I At every step t > 1, we assume
I β best hypotheses so far: h(1) . . . h(β) with scores s(1) . . . s(β)

I Stepwise hypothesis space of size βV

Ht =
{
h(b)x|b ∈ {1 . . . β} , x ∈ V

}
Each h(b, x) ∈ Ht is scored s(b,x) = s(b) + s(x|h(b)).

I Update hypotheses/scores to be β elements of Ht with
highest s(b,x).

I Must align h(b, x) to h(b) carefully so that we can continue
with correct previous hidden states

Karl Stratos CS 533: Natural Language Processing 25/33



Beam Search: A Complete Example

Beam size 2, vocab {a, b, 〈bos〉, 〈eos〉} (omitting 〈bos〉 branches when expanding
assuming impossible), edge value log pθ(xt|x<t), node value log pθ(x1 . . . xt). At
each time step, green boxes indicate top-2 hypotheses to continue.

〈bos〉
0.0

a
−0.7

b

−0.5

〈eos〉
−100

a
−3.0

b

−0.9

〈eos〉
−3.8

a
−1.4

b

−0.9

〈eos〉
−100.5

a
−1.0

b

−90.9

〈eos〉
−80.9

a
−2.2

b

−2.1

〈eos〉
−1.8

a
−3.1

b

−4.4

〈eos〉
−1.1−0.7

−0.5

−100

−2.3
−0.2

−3.1

−0.9

−0.4

−100

−0.1

−90

−80

−1.3

−1.2

−0.9

−2.1

−3.4

−0.1

Completed hypothesis-score pairs: (aba,−1.1), (bb,−1.8). Return aba as an
approximation to x∗.

Karl Stratos CS 533: Natural Language Processing 26/33



Other Beam Search Details

I Specify max number of steps Tmax

I If no hypothesis is completed within Tmax steps, return the top
(unfinished) element.

I Runtime: O(topβ(βV )Tmax) where topβ(βV ) is the time
needed to get β highest-scoring items from β × V items

I O(V Tmax) if β = 1 (greedy), a great improvement over
brute-force O(V Tmax)

I Length penalty. Instead of using log pθ(x1 . . . xt), consider
1
t log pθ(x1 . . . xt) during beam search

I Alleviates the problem of rewarding sequences for being short.

I More generally, can introduce various penalties/constraints
during beam search

I Coverage penalty: Encourage hypotheses to cover certain
token types

I n-gram blocking: Prune branches that result in a repeated
n-gram

Karl Stratos CS 533: Natural Language Processing 27/33



Generating Text from a Language Model

I How can we sample a random sentence from the (trained)
model? Stepwise sampling by the chain rule:

(x1 . . . xT ) ∼ pθ ⇔ x1 ∼ pθ(·|〈bos〉)
x2 ∼ pθ(·|〈bos〉, x1) . . .
xT ∼ pθ(·|〈bos〉, x1 . . . xT−1)
〈eos〉 ∼ pθ(·|〈bos〉, x1 . . . xT−1, xT )

I Can calibrate randomness by introducing a “temperature”
parameter τ > 0 in softmax

pθ,τ (x|x<t) =
exp

(
score(x<t,x)

τ

)
∑

x′∈V exp
(

score(x<t,x′)
τ

)
Point-mass as τ → 0 (greedy decoding), uniform as τ →∞

Karl Stratos CS 533: Natural Language Processing 28/33



Other Generation Methods

I Top-k sampling (Fan et al., 2018). At each step, sample only from
k most probable words C ⊂ V (e.g., k = 10, 20)

pθ,C(x|x<t, C) =
{

exp(score(x<t,x))∑
x′∈C exp(score(x<t,x′))

if x ∈ C
0 otherwise

I Idea: Eliminate weird words by truncating vocabulary
I Need to select right k. If too small and distribution is flat,

miss out creativity. If too large, reintroduce weird words.

I Top-p sampling (Holtzman et al., 2020). Same thing but set C ⊂ V to
be top words whose probabilities sum to > p (e.g., p = 0.9).

I Idea: Alleviate the need to tune k in top-k sampling by making
|C| dynamic (only care about probability mass coverage)

I Still need to select p

I Any of these sampling schemes can be used in conjunction
with beam search: Replace β-argmax with β samples (without
replacement)

Karl Stratos CS 533: Natural Language Processing 29/33



Other Generation Methods

I Top-k sampling (Fan et al., 2018). At each step, sample only from
k most probable words C ⊂ V (e.g., k = 10, 20)

pθ,C(x|x<t, C) =
{

exp(score(x<t,x))∑
x′∈C exp(score(x<t,x′))

if x ∈ C
0 otherwise

I Idea: Eliminate weird words by truncating vocabulary
I Need to select right k. If too small and distribution is flat,

miss out creativity. If too large, reintroduce weird words.

I Top-p sampling (Holtzman et al., 2020). Same thing but set C ⊂ V to
be top words whose probabilities sum to > p (e.g., p = 0.9).

I Idea: Alleviate the need to tune k in top-k sampling by making
|C| dynamic (only care about probability mass coverage)

I Still need to select p

I Any of these sampling schemes can be used in conjunction
with beam search: Replace β-argmax with β samples (without
replacement)

Karl Stratos CS 533: Natural Language Processing 29/33



Other Generation Methods

I Top-k sampling (Fan et al., 2018). At each step, sample only from
k most probable words C ⊂ V (e.g., k = 10, 20)

pθ,C(x|x<t, C) =
{

exp(score(x<t,x))∑
x′∈C exp(score(x<t,x′))

if x ∈ C
0 otherwise

I Idea: Eliminate weird words by truncating vocabulary
I Need to select right k. If too small and distribution is flat,

miss out creativity. If too large, reintroduce weird words.

I Top-p sampling (Holtzman et al., 2020). Same thing but set C ⊂ V to
be top words whose probabilities sum to > p (e.g., p = 0.9).

I Idea: Alleviate the need to tune k in top-k sampling by making
|C| dynamic (only care about probability mass coverage)

I Still need to select p

I Any of these sampling schemes can be used in conjunction
with beam search: Replace β-argmax with β samples (without
replacement)

Karl Stratos CS 533: Natural Language Processing 29/33



Contextual Text Generation

I Start with a prompt x1 . . . xJ ∈ V, sample from pθ(·|x1 . . . xJ)
to complete the story.

I Online demo with a transformer-based LM:
https://talktotransformer.com/

Karl Stratos CS 533: Natural Language Processing 30/33

https://talktotransformer.com/


Evaluating Text Generation

I Automatic evaluation: Perplexity on a held-out corpus
I Easy to obtain, ensures that model is diverse (must assign high

probs to unseen text)
I Quality score can be degenerate: perplexity infinite if model

assigns prob ≈ 0 to any of test tokens

I Human evaluation: Overall quality of text on a scale of 1 to 5
I Uses the human quality bar
I Not scalable, diversity score can be degenerate: model might

regurgitate training sentences (which will score high)

I Other automatic metrics based on n-gram overlaps with
reference text

I Examples: BLEU, ROUGE
I Better quality estimation than perplexity, but can correlate

poorly with human judgment

I Hybrid approaches
I Example: HUSE (Hashimoto et al., 2019)

I Classification error of predicting if a machine generated text or
human, use human scores as features

Karl Stratos CS 533: Natural Language Processing 31/33



Human-Like: Not Most Probable

I Naive beam search/sampling output:

On Monday, the president of the United States of America
and the president of the United States of America and the

president of the United States of America and the president of
the United States of America and . . .

I Why is human text not the most probable text? Possible
hypotheses

I Models are optimized for likelihood/perplexity: sufficient to
only rely on short history

I Grice’s Maxims of Communication (Grice, 1975): Humans
optimize against stating the obvious

I In practice, have to mess around with the choice of beam
search (with penalties/blocking), top-k, top-p, softmax
temperature to get desired generation qualities.

Karl Stratos CS 533: Natural Language Processing 32/33



Conditional Language Modeling

I Idea: make LM condition on something.

pθ(y1 . . . yT |x) =
T+1∏
t=1

pθ(yt|x, y<t)

I Applications: Machine translation, summarization, dialogue,
image captioning, video captioning, . . .

I By the chain rule, only need to model conditional word
distribution, but now conditioning on x as well as history y<t.

I Same training: Per-token cross-entropy loss

I Conditional decoding: Given xtest, find

y∗ = argmax
y1...yT∈VT , T∈{1...Tmax}

T+1∑
t=1

log pθ(yt|xtest, y<t)

Again approximate by beam search
Karl Stratos CS 533: Natural Language Processing 33/33


