CS 533: Natural Language Processing

Coreference Resolution, Review

Karl Stratos

Rutgers University

Coreference Resolution (Coref)

- ► Task. Given a document (consisting of multiple sentences)
 - 1. Identify all mentions (i.e., spans) that refer to some entities
 - 2. Cluster the mentions into underlying entities
- Example
 - ▶ Input: "I voted for Nader because he was most aligned with my values," she said.
 - Output: $C_1 = \{ Nader, he \}, C_2 = \{ I, my, she \}$
- Related, but different from entity linking
 - ► Typically no KB: Must infer new entities dynamically without grounding to a KB
 - Considers a wide range of mention types like pronouns and verbs as well as noun phrases
 - Can be long-range: A mention at the end of a document may refer to the first sentence
- Not an end-task itself
 - ► Pretrained LMs (seem to) solve language tasks that require coref without explicit coref training (e.g., Winograd)
 - ► Nevertheless important and difficult problem, with obvious applications in text analysis

Types of Coreference

- ► Anaphora. A later mention (anaphor) refers to an earlier mention (its antecedent). This is standard coref
 - The music was so loud that it couldn't be enjoyed.
- Cataphora. An earlier mention (cataphor) refers to a later mention (its postcendent)
 - If they are angry about the music, the neighbors will call the cops.
- ▶ **Split antecedents**. An anaphor refers to split antecedents
 - Carol told Bob to attend the party. They arrived together.
- Apositives. Consecutive noun phrases renaming each other
 - Little Davey, my youngest nephew, is feeling sick.

(And more.) Complex linguistic phenomenon, heavily language-specific

► English: Pronoun it may refer to nothing (e.g., it takes a lot of work to succeed)

Labeled Data for Coref

- Annotation challenging even for humans, low inter-annotator agreement
- Current go-to dataset: OntoNotes (Pradhan et al., 2012)
 - Document-level coref annotation from the CoNLL-2012 shared task: Also includes Chinese and Arabic
 - ▶ 2802, 343, 348 train/dev/test documents (1 million words)
 - Varying document lengths: From 454 to 4009 words in train
 - ▶ Text from newswire, magazine, broadcast news/conversations, web, conversational speech, New Testament
 - No single-mention (singleton) entity labeled
- Referring mentions can be nested or overlapping
 - ▶ But when [you]₁ pray, [you]₁ should go into [[your]₁ room]₂₃ and close the door.
- Another challenge: Evaluation
 - ► Given a document with ground-truth entities and predicted entities, how do we judge goodness?
 - Series of proposed metrics: MUC, B³, CEAF, LEA

Coref Notation

- ▶ Document: Sequence of tokens $D = (x_1 \dots x_T)$
- **Entity** (aka. equivalence class) is a set of (possibly overlapping) coreferent mention spans $(i, j), 1 \le i \le j \le T$
- Annotation consists of **key entities** $S = \{S_1 \dots S_n\}$
- System output consists of of response entities $\mathcal{R} = \{R_1 \dots R_{n'}\}$
- Only exact match considered for mention prediction
 - \triangleright S = {{1, 2, 3, 4, 5}, {6, 7}, {8, 9, A, B, C}}, 12 gold mentions (each index is a span) clustered into 3 key entities
 - $\mathbb{R} = \{\{1, 2, 3\}, \{6, 7, 8, 9, A, B\}\}, 2 \text{ response entities, failed to}$ recover gold mentions 4, 5, C (but might have predicted other mentions)
 - Predicted span considered correct (e.g., 9 in S_3 and R_2) iff it exactly matches a gold span, no partial credit for overlapping
- ▶ Goal: Define assymetric $\text{Eval}(\mathcal{S}, \mathcal{R})$ representing **recall**
 - Flipping $\text{Eval}(\mathcal{R}, \mathcal{S})$ represents **precision**
 - $ightharpoonup F_1 = 2 \times \operatorname{precision} \times \operatorname{recall}/(\operatorname{precision} + \operatorname{recall})$ CS 533: Natural Language Processing

MUC (Vilain et al., 1995)

▶ Intersect operation. Entity S "intersected" with \mathcal{R} is a partition of S induced by response coverage

$$S = \{1, 2, 3, 4, 5\}$$

$$\mathcal{R}_1 = \{\{1, 2\}, \{4, 5, 6, 7\}\} \qquad p_{\mathcal{R}_1}(S) = \{\{1, 2\}, \{3\}, \{4, 5\}\}\}$$

$$\mathcal{R}_2 = \{\{1, 2, 3, 4, 5, A\}\} \qquad p_{\mathcal{R}_2}(S) = \{\{1, 2, 3, 4, 5\}\}$$

- ▶ Idea: $|p_{\mathcal{R}}(S)|$ measures fragmentation of S by \mathcal{R} (smaller is better, 1 if preserved)
- ▶ MUC. Can be derived by counting the minimal number of additional links \mathcal{R} needs to generate entities in \mathcal{S} (assumes non-singleton mentions)

$$\operatorname{Eval}(\mathcal{S}, \mathcal{R}) = \frac{\sum_{S \in \mathcal{S}} \frac{|S| - |p_{\mathcal{R}}(S)|}{|S| - |p_{\mathcal{R}}(S)|}}{\sum_{S \in \mathcal{S}} \frac{|S| - 1}{|S|}}$$

 $\begin{array}{c} \blacktriangleright \text{ Example: For } \mathcal{S}=\{\{1,3\}\} \text{ and } \mathcal{R}=\{\{1,2,3\}\}, \text{ recall is } \frac{2-1}{2-1}=1, \\ \text{precision is } \frac{3-2}{3-1}=\frac{1}{2} \\ \text{Karl Stratos} \end{array}$

 MUC only considers the minimal number additional links and does not differentiate types of merges

$$\mathcal{S} = \{ \{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9, A, B, C\} \}$$

$$\mathcal{R}_1 = \{ \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, A, B, C\} \}$$

$$\mathcal{R}_2 = \{ \{1, 2, 3, 4, 5, 8, 9, A, B, C\}, \{6, 7\} \}$$

Both responses have recall 1 and precision 0.9 under MUC

▶ **B**³. Average mention-level (not link-level) precision/recall

Response 1 precision $\frac{1}{12}((5 \cdot \frac{5}{5}) + (2 \cdot \frac{2}{7} + 5 \cdot \frac{5}{7})) \approx 0.76$, Response 2 precision $\frac{1}{12}((5 \cdot \frac{5}{10} + 5 \cdot \frac{5}{10}) + (2 \cdot \frac{2}{2})) \approx 0.58$ (both have recall 1)

CEAF (Luo, 2005)

▶ MUC and B³ "unintuitive" behavior in boundary cases

$$\mathcal{S} = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9, A, B, C\}\}\$$

$$\mathcal{R}_3 = \{\{1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C\}\}\$$

$$\mathcal{R}_4 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{A\}, \{B\}, \{C\}\}\}\$$

 \mathcal{R}_3 recall 1 (MUC & B³) but no $S \in \mathcal{S}$ "recovered", \mathcal{R}_4 precision 1 (B³, undefined for MUC) but no $R \in \mathcal{R}_4$ is "correct"

▶ **CEAF**. Considers optimal 1-to-1 mapping $g^*: S \mapsto R$ achieving $C^* = \max_g \sum_{S \in \mathcal{S}} \phi(S, g(S))$ (Kuhn–Munkres alg). $\phi(S, S')$ is any entity similarity measure. Defines

$$\operatorname{Eval}_{\phi}(\mathcal{S}, \mathcal{R}) = \frac{C^*}{\sum_{S \in \mathcal{S}} \phi(S, S)} \quad \operatorname{Eval}_{\phi}(\mathcal{R}, \mathcal{S}) = \frac{C^*}{\sum_{R \in \mathcal{R}} \phi(R, R)}$$

▶ \mathcal{R}_3 recall 0.2 and \mathcal{R}_4 precision 0.1 under CEAF_{ϕ_4} where $\phi_4(S,S')=2\,|S\cap S'|\,/(|S|+|S'|)$

LEA (Moosavi and Strube, 2016)

- MUC least discriminative because it only considers additional links, can't handle singletons
- ▶ B³ and CEAF found out to be uninterpretable (e.g., adding incorrect entities in \mathcal{R} can *increase* the score!), mainly because mention-level
- ► **LEA**. Link-based like MUC but accounts for all links including self-links (can handle singletons) link resolution score

$$\operatorname{Eval}_{\phi}(\mathcal{S}, \mathcal{R}) = \frac{\sum_{S \in \mathcal{S}} |S| \times \sum_{R \in \mathcal{R}} \frac{\binom{|S \cap R| + 1}{2}}{\binom{|S| + 1}{2}}}{\sum_{S \in \mathcal{S}} |S|}$$

 $\binom{n+k-1}{k}$: number of ways to choose k items out of n with replacement)

- So what's the verdict on coref evaluation?
 - ▶ Common practice: Report all MUC, B^3 , CEAF $_{\phi_4}$ (F₁) as well as their macro-average
 - ► But using a single reliable metric (LEA?) would be beneficial, meaningful significance test and precision/recall

End-to-End Neural Coref

- Coref traditionally approached as a pipeline
 - Run a mention detector, learn a separate model to link detected mentions
 - Subject to the usual limitations of pipeline (error propagation, complex heuristics)
- Modern approach: End-to-end (mention detector just a part of the whole model, learned jointly)
- Key ideas
 - 1. Consider all $O(T^2)$ mentions in $D=(x_1\dots x_T)$ as potential mentions: Number of (possibly overlapping) spans $\binom{T}{2}=\frac{T(T-1)}{2}$ (why?)
 - For each mention, dynamically define a distribution over all its antecedents ordered by start index (plus end index if tied)
 - 3. Train the model by marginalized log likelihood (target: only the antecedents in the gold entity)
 - 4. Efficient training by learnable pruning

Model

- Assumes contextual mention encoder $\mathbf{enc}_{\theta}(D,i,j) \in \mathbb{R}^d$
 - Example: $\mathbf{enc}_{\theta}(D, i, j) = h_i \oplus h_j \oplus \sum_{i \leq k \leq j} \beta_k h_k$ where $(h_1 \dots h_T) = \mathrm{BERT}(D)$ and $\beta_i \dots \beta_j$ is an attention distribution over $h_i \dots h_j$ ("head-finding")
- ▶ Mention scorer: $\mathbf{score}_{\theta}^{m}(D, i, j) = \mathrm{FF}_{\theta}^{1}(\mathbf{enc}_{\theta}(D, i, j)) \in \mathbb{R}$
- **Coreference scorer**: Shares **enc** $_{\theta}$ with mention scorer

$$\mathbf{score}^c_{\theta}(D,(i,j),(i',j')) = \mathrm{FF}^2_{\theta} \left(\begin{bmatrix} \mathbf{enc}_{\theta}(D,i,j) \\ \mathbf{enc}_{\theta}(D,i',j') \\ \mathbf{enc}_{\theta}(D,i,j) \odot \mathbf{enc}_{\theta}(D,i',j') \\ \mathbf{extra}_{\theta}(D,(i,j),(i,j')) \end{bmatrix} \right) \in \mathbb{R}$$

 $extra_{\theta}$ encodes extra features (distance between mentions, if same speaker), each feature value has a learnable embedding

▶ Final model: If $(i, j) \neq (0, 0)$ (dummy mention, next slide),

$$\begin{split} \mathbf{score}_{\theta}(D,(i,j),(i',j')) &= \mathbf{score}_{\theta}^{m}(D,i,j) + \mathbf{score}_{\theta}^{m}(D,i',j') + \\ &\quad \mathbf{score}_{\theta}^{c}(D,(i,j),(i',j')) \end{split}$$

Otherwise 0. Interpretation: Won't link if none has positive score

Karl Stratos CS 533: Natural Language Processing 11/24

Training

- Let $m_0, m_1 \dots m_{T(T-1)/2}$ denote all (possibly overlapping) spans in document, sorted left-to-right: $m_0 = (0,0)$ is a dummy mention
- ▶ Model defines probability of $m_{t'}$ referring to m_t where t < t' by

$$p_{\theta}(m_t \leftarrow m_{t'}|D) = \frac{\exp(\mathsf{score}_{\theta}(D, m_t, m_{t'}))}{\sum_{l < t'} \exp(\mathsf{score}_{\theta}(D, m_l, m_{t'}))}$$

- Annotation doesn't give explicit links (only key entities), but we can marginalize
- ▶ For each mention $t' \in \{1 \dots T(T-1)/2\}$, let $\mathbf{Ant}(t)$ denote all t < t' such that m_t and $m_{t'}$ are in the same key entity: $\{0\}$ if $m_{t'}$ is not in any key entity or is the first mention of a gold entity
- ightharpoonup Training loss on document D

$$J_D(\theta) = -\sum_{t'=1}^{T(T-1)/2} \log \left(\sum_{t \in \mathsf{Ant}(t')} p_{\theta}(m_t \leftarrow m_{t'}|D) \right)$$

Learnable Pruning

- ▶ Don't consider all $\frac{T(T-1)}{2}$ mentions, prune by mention scores
 - ▶ In practice, also prune by length (e.g., discard m if |m| > 10)
- ► Two-stage beam search (Lee et al., 2017)
 - Only use top $M = \lambda T$ (e.g., $\lambda = 0.4$) mentions by $\mathbf{score}_{\theta}^m$
 - ▶ Because enc_{θ} is shared between scorers, pruning improves as the model improves!
 - ▶ Still too large: Input size $O(M^2)$. Additionally restrict to $\leq K$ nearest antecedents for each mention: Input size O(MK)
- ► Coarse-to-fine pruning (Lee et al., 2018) (three-stage beam search)

$$\begin{split} \mathbf{score}_{\theta}(D, m, m') &= \mathbf{score}_{\theta}^{m}(D, m) + \mathbf{score}_{\theta}^{m}(D, m') + \\ &\quad \mathbf{score}_{\theta}^{c}(D, m, m') + \quad \underbrace{\mathbf{score}_{\theta}^{f}(D, m, m')}_{} \end{split}$$

- 1. Choose M initial spans by $\mathbf{score}_{\theta}^{m} = \mathbf{enc}_{\theta}(D,m)^{\top} \dot{A}_{\theta} \mathbf{enc}_{\theta}(D,m')$
- 2. For each mention m, select K mentions m' with largest $\mathbf{score}_{\theta}^m(D,m) + \mathbf{score}_{\theta}^m(D,m') + \mathbf{score}_{\theta}^f(D,m,m')$ (fast)
- 3. Compute full \mathbf{score}_{θ} over the thresholded mentions and train

Inference Example

Given a document $D = (x_1 \dots x_T)$ (in practice processed in independent chunks for both training and evaluation)

- 1. Consider all spans up to length 30.
- 2. Coarse pruning: Rank these spans by score $^m_{\mu}$ and take the top 0.4T.
- 3. For each surviving mention
 - 3.1 **Fine pruning**: Rank all surviving mentions to the left by $\mathbf{score}_{\mathbf{a}}^{m}$, $\mathbf{score}_{\mathbf{a}}^{f}$: Take top K = 50 as potential antecedents
 - 3.2 Link to argmax antecendent under full **score** θ (dummy iff all negative)
- 4. Extract clusters from the resulting graph, ignoring dummy links
 - Graph: $m_0 \leftarrow m_1$, $m_2 \leftarrow m_3$, $m_2 \leftarrow m_4$, $m_3 \leftarrow m_5$, $m_6 \leftarrow m_7$
 - Clusters: $\{\{m_2, m_3, m_4, m_5\}, \{m_6, m_7\}\}$

Note this doesn't handle singleton mentions: Okay for OntoNotes (no singleton) Karl Stratos

Results on OntoNotes

▶ Average F_1 across MUC, B^3 , CEAF $_{\phi_4}$

- ► L-18 (Lee et al., 2018): End-to-end coref with coarse-to-fine pruning, adopted by subsequent works
- ► Improvement dominated by pretrained represenations: SpanBERT (J-20) > BERT (J-19) > ELMo (L-18)
- "Higher-order" models: Encode dependency between mentions, not very helpful given powerful contextual transformation (not surprisingly)

Limitations and Alternatives

- ▶ While the model "learns" to beam search, errors in mention proposal are irreversible
- ▶ While mention embeddings $\mathbf{enc}_{\theta}(D,m)$ can be deeply contextual, the coreference score $\mathbf{score}_{\theta}(D,m,m')$ is a relatively shallow function of mention embeddings
- ► Alternative approach: Reduction to QA (Wu et al., 2020)

Can recover from mention proposal errors, full QA models capture more dependencies between mentions, data augmentation with QA datasets: 83.1 on OntoNotes

REVIEW

Modern NLP

Short-term goals: Make machines understand human language

Long-term goals: Make machines actually intelligent

Her (2013)

Challenges in Language Processing

- Ambiguity: "British Left Waffles on Falklands"
- Nonsmoothness: "Jack Black" vs "Black Jack" vs "Black Jack Black"
- World knowledge:
 - ► The city councilmen refused the demonstrators a permit because they feared violence.
 - ► The city councilmen refused the demonstrators a permit because they advocated violence.

Lots of progress by approaching NLP with machine learning, both supervised and unsupervised methods

- ► Recent game changer: Large-scale pretrained language models with deep self-attention architectures
- Can do seemingly amazing feats

Incredible Imitation of Understanding

► Chatbot: Given conversation so far, output a response (Roller et al., 2020)

Skipping Finetuning

► **GPT-3**: After LM training, do an arbitrary task on the fly by conditioning on a few demonstrations in natural language

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

- ▶ No finetuning, no gradient updates!!
- Competitive with state-of-the-art supervised NMT models when the target language is English
 - ► This is because much of training corpus is still in English. Lags behind when target is not English
 - Actually outperforms SOTA on WMT14 Fr→En (39.2 vs 35)
- Likewise, competitive performance on many NLU tasks without finetuning

Text2Image Generation

an illustration of a baby daikon radish in a tutu walking a dog Edit prompt or view more images 4 an armchair in the shape of an avocado [...]

- ► DALL·E (Ramesh et al., 2021): GPT-3 applied to text-image pairs
- Single stream of 1280 tokens: 256 text, 1024 image
- No change in training
- Can synthesize images from arbitrary text prompts!

TEXT AND IMAGE PROMPT the exact same cat on the top as a sketch on the bottom

a store front that has the word 'openai' written on it [...]

Edit prompt or view more images +

Limitations

- Seq2seq: Still not enough to solve NLP
 - When probed enough, LMs reveal that they don't actually understand anything
 - No reliable way to control generation: Hallucination, repetition, and other garbage even with lots of heuristics
 - Promising direction: Knowledge-enhanced models that actively consult KBs and other sources of information
- Lots of big unsolved problems
 - Modeling causality not correlation: Does increase in crime cause increase in police force, or the other way around?
 - ► Removing prejudice: How can I enforce the model to make predictions without racial bias present in data?
 - ► Sustainable intelligence: Can the model chat for hours instead of 2 minutes? Can a machine be my long-time friend?
 - ► Large-scale input: Can the model process and understand an entire novel instead of a single 512-token block?

The Future

- Convergence toward a single general model
 - ▶ Past: Model for parsing, model for tagging, model for topic classification, model for sentiment analysis, . . .
 - ▶ Future: One giant model transferable to any downstream task
- ► Not much change in general framework (Transformer, cross entropy), growing emphasis on engineering challenges
 - ▶ Impossible to fit the model on a single GPU, must parallelize the *model* (e.g., by layers) across multiple GPUs
 - This trend will continue
- ▶ Will a model be "conscious" at some point?
 - No one knows
 - Regardless, NLP has all kinds of fundamental applications in AI