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Review: Tagging by Generative Probabilistic Tagger

» Tagging: Map sentence x1.7 = (21 ...27) € VT to label
sequence y1.7 = (y1...yr) € Y7
» Generative model: joint distribution, chain rule
T
po(zrr, yir) = [ [ powelr<e, y<r) x polaelw<r, y<t) x poly.lz<r,y<r)
t=1

» (First-order) Hidden Markov models (HMMs)

T
po(wrr, yrr) = [ ] to(yelyi1) x op(aelye) xto(v.lyr)
t=1

transition prob emission prob

» Simplest form of labeled sequence generation, marginalization
and inference tractable
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Review: Exact Marginalization by Forward Algorithm

» Marginalization. What is the marginal probability of x1.p
under the model?

polwrr) = Y po(rrr, yrr)
yl:TeyT

» Forward algorithm. Fills out table 7 € R7*YI defined as

W(tay) = Z pg(xl...xt,yl...yt)
Y1y €V yr=y

by computing for all ,3/ € Y and t > 1 left-to-right

m(1,y) = to(ylyo) x op(21]y)
w(ty') = w(t—1y) xto(y'ly) x op(xely)

yey

> Return p@(xltT) = Zyey W(T, y) X t@(y*|y)
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Review: Exact Inference by Viterbi Algorithm

» Inference. What is the most probable yi.7 € YT of z1.7
under the model?

y1.7 = argmax py(T1.7, Y1.7)
y1.7€VT

» Viterbi algorithm. Fills out table 7 € RT*IYI defined as

m(t,y) = max Po(T1 .. ey Y1+ Yt)
Y1 Y€V yr=y

Same as forward, only switch sum to max. Then
Po(y.plv1:r) = maxyey m(T',y) X to(y.|y)

» But this only gives us max probability, must keep a
backtracking table to record the label path during Viterbi

B(t,y') = arg max m(t —1,y) X to(y'|y) x og(xe|y)
ye
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Constrained Inference

» Easy to modify Viterbi to only consider certain paths, e.g.,

» NER. If y; = B-PER, then we must have y;41 € {I-PER,0}.
» POS. For efficiency, only allow y;1+1 € Y(y;) where V(y;) is
the set of tags following y; in training data

Janet will back the bill
(Image credit: Jurafsky and Martin)
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Directed Graphical Models (DGMs)

» HMM is a special case of a directed graphical model
(DGM), aka. Bayesian network (Bayes net)

» Directed acyclic graph (DAG) representing a joint distribution,
(lack of) directed edges encode conditional independence
assumptions

» An example DGM (example credit: David Blei)

@ @q@ Pr(X) = Pr(X1) Pr(Xs|X1) Pr(Xs|X1)
@ e PI“(X4|X2) PI‘(X5|X3) PI‘(X6|X2,X5)

> Represents a joint distribution over X = (X ... X§)
» Each X; € X} has its own possible values
» What independence assumptions are we making here?

» Again, two central calculations
> Marginalization: e.g., Pr(Xo =¢) =}, _ . Pr(X =)
» Inference: z* = argmax, Pr(X = x)
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Examples of DGM

» n-gram language models with Markov order 1

. . @ Pr(X) = Pr(X;) Pr(X2|X1) Pr(X3|X2)

> HMMs

Co—()—()
3
Pr(X,Y) = [ Pr(Ye|Ye—1) Pr(X:|Y:) Pr(Yi|Y3)
& ® ® =

> Trees

Pr(X) = Pr(X1) Pr(Xa|X1) Pr(Xs|X1) Pr(X4|X3) Pr(Xs|Xs)

» General DAGs
@eq@ Pr(X) =Pr(X1) Pr(Xa|X1) Pr(X3]|X1)
@ ° Pr(X4|X2) Pr(Xs|X3) Pr(Xe| X2, X5)
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Observed vs Unobserved Variables in DGM
» Typically some part of a DGM is observed

@Qe@ @—C0—(——@
@) ORROMC)

Xy = x9, X3 = 23 X1 =1, Xo = w2, X3 =13
» We want to calculate various probabilities in the presence of
observed variables, such as
» Left: Probability of the observed event Pr(Xs = x9, X35 = x3)
» Right: Highest probability of label sequence
maXy, y, v, PT(X1 =21, Xo = 29, X3 =23, Y1 = 91,Y2 =
Y2, Y3 = y3). This is what Viterbi computes.
» Conditional independence assumptions in DGMs make
efficient marginalization /inference feasible
» Recall: X, Z independent (X L Z) conditioned on Z iff

Pr( X =z|]Y =y, Z=2)=Pr(X =z|Y =y)

for all values of z,y, z (equiv. p(x,y|z) = p(z|2)p(y|2))
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Rules of Conditional Independence in DGMs

> The future is independent of the past given the present (Markov assumption)

OnOn© -0

X rz X1Z|Y
» Children are independent of each other given their parent

T T

XKz X1Z|Y
» Causes are independent, but become dependent if effect is observed

NN

X1z XYLZ|Y
> Exercise: Verify independence claims mathematically, and think of examples for
non-independence claims
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Marginal Decoding
» Back to HMM: Given z1.p predict for each positiont =1...T

yj = arg max Z po(T1.T, Y1.7)
VEY ey Ty

“marginal” u(t,y)

@@@@
® ® ®

» This is known as marginal decoding. This is in general not
the same as Viterbi decoding
» Better for per-position performance metric like POS tagging
accuracy (can yield 1-2% improvement)
» Worse for structure modeling like F1 in NER (why?)

» Central calculation: How to compute pu(t,y) forallt =1...T
and y € V7

» Answer: Application of forward and backward probab|||t|es
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Decomposition of Marginal Under HMMs
@—)—()— () —()—E
Future independent of past given 1; by Markov assumption
po(T1.T, Y1.7) ;pe(l‘gzw y<t) X po(T>t, Y>t|yt)
Therefore marginal given by

pt) = D polw<s, y<i) X po(w>t, ysilye)
Y1.7° Yt=Y

= ( Z po(T<t, ygt)) (Z Po(T>t, Y>tlye = y)

Y1t Yt Y>t

/

)

J/

Forward prob! How to compute this?
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Backward Algorithm

» DP similar to forward, but instead fills out right-to-left

w(t,y) = Z Po(Tet1 - 27, Yeg1 - Y7 | Ye = )
Ye1..yr YT

» Base case: T(T,y) = to(y«|y)
» Main body: Fort=T—-1...1, fory € ),

m(ty) =Y pol@st,yst |y =)

Y>t
= Z Z Po(T>t41,Y>t+1 | Y1 = ') X to(yly') x og(ae|y’)
Y>t+1 y

=3 7w (t+1,9) xto(yly') x og(zely)
N —

/
Y already computed

» Runtime same as forward: O(T' |Y|?)
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Summary of Marginal Decoding
Assuming HMM parameters defining transition t4(y'|y) and
emission og(x|y) probabilities, given sentence 1.7 € V7,

1. Run forward algorithm to compute for all ¢,y
m(t,y) = > po(1 .- Tt Y1 Yr)
Y1 Y€V yr=y
2. Run backward algorithm to compute for all ¢,y
m(t,y) = Z Po(Tis1 -1, Yey1 - Y1 | Yo = Y)
Yer1--yr YT

3. For all t,y calculate the marginal probability by

M(ta Z/) = ﬂ(ta y) X %(ta Z/)

4. For each position t = 1...7T, predict as the label of x;

yi = argmax pu(t,y)
yey
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Backpropagation as Backward Algorithm
» Recall: In computation graph DAG with output scalar variable
x¥, backpropagation computes 2’ := V iz by
2t = Z 2 X Vid (1)
jech(z)
> Uses the fact that i affects w only through its children nodes
» Equivalent/alternative view: (1) is “backward algorithm” for

2t = Z vzin—lflfin X oo X inl %2 (2)
(i1...in)EP(iw)
where P(i,w) is an exponentially large set of all possible

paths from 7 to w, applies chain rule on each entire path.
» Why: Just rewrite (2) using DAG structure

E E V$¢n71$z" X oo X inzl‘zg X mesj
jech(i) \(iz...in)EP(jw)
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Discriminative Tagger

» Model defines a conditional distribution py(y; . ..yr|x1 ... 27)
over label sequences, given a sentence

» Cannot generate 7 ...x7, only predict label sequences
» But if we only care about tagging, discriminative is sufficient
» Discriminative possibly more effective than generative (esp
with small labeled data), no need to learn input distribution
» Model: scorey : VT x YT — R assigning score to any
sentence paired with a tag sequence
» Training: Minimize cross-entropy loss H(pop, pp) where

exp(scoreg(z1.7, Y1.7))
y’l:v],EyT eXp(Scoreg (xl:T7 y’lT))

po(yr.7|T17) = =

> Inference: Given 1.7 return argmax, .y scoreg(x1.7)

» This is just a classifier, except that the label space is Y7
» How to handle “giant softmax”, find argmax label sequence?
» Same approach: Make computation tractable by introducing

structural assumptions, but now non-probabilistically
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Markov Assumption in a Discriminative Tagger

» We define the score function to factorize as

T

scoreg(z1.7, Y1) = Y | scoreg(z1:, Ui 1, Ui t)
t=1

This model is called (first-order) conditional random field
(CRF). Will discuss why later
» Only scores a label pair y,3/ € Y at each step t
» But can still access the entire sentence (not just left/current
input)! This is a major advantage of a discriminative model.

» Implications: Model distribution now

1 T

—————— | | exp(scorey(x1.7, yi—1, Yy, t
Zg(z1.1) tHI ( ( )

pe(ylzT\iﬁlzT) =

t-th nonnegative “potential function”

Zy(z1.7) i= Zyi:TeyT exp(scoreg(x1.7,y].7)) “partition

T T
function”. Infer argmax,  cyr > ;_, scorey(r1.7,Yi—1, Y1)
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CRF Loss

» To optimize cross-entropy loss, given labeled sequence
x1.7,y1.7 only need to compute

T
—log po(yr.r|w1:r) = log Zg(w1.r) — Y _ scoreg(z1.p, ye—1, Yi, t)
t=1

log partition function

» Central calculation: how to compute the log partition
function? Again DP possible by Markov assumption

» Forward algorithm: Fill DP table for all ¢,/

W(t7 y/) — log Z exp(scoree(ﬂm;% yllzt))
Y14 €YV =y’

where scoreg (1.7, Y5.,) = > j_, scoreg(z1.r,y) 1,y 1).
Then log Zp(z1.7) = log(}_ ey 7(T,y')).
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Forward Algorithm for Computing Log Partition

» Base case: 7(1,y) = scorey(z1.7,yo,y, 1) for all y € Y
» Main body: Fort=2...T, forally € Y,

7(t,y') = log ( Z exp(scoreg(x1.7, yit))>

Y1 €V Y=y

= log (Z > exp(scorey (1.7, /1, 1))

YEY \yi.,_ 1€V Ly, 1=y

x exp(scorey(z1.7,7,y t)))

= log (Z exp(m(t — 1,y) + scoreg(z1.7, Y, Y/, t))>

yey

» Runtime: O(T'|V|*), quadratic dependence on label set size
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Viterbi Algorithm for CRFs

v

Goal: Find argmax of Zthl scoreg (1.7, Yi—1, Y, t)

v

DP table 7(t,y) = maxy, ,cyt. y,—, SCOrey(T1.T, Y1:t)

v

Same base case: w(1,y) = scoreyg(z1.7, 90,9, 1) forall y € Y
Main body: Fort=2...T, forall / € Y,

v

m(t,y) = maj})c 7(t —1,7) + scoreg(x1.7, 1,9, t)
ye

v

Recover the actual argmax label sequence by backtracking:

B(ta y/) = arg HJ]}&X 7T(t - 17 y) + SCOrEQ(.Tl;T, Y, y/7 t)
ye

yr = argmax, ©(T,y), yp_ = BT y7), - i = B(2,55)
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Neural Parameterization of CRF

» Recall: We just need to define scorey(z1.7,y,y',t), from
which we derive scorey(z1.7, y1.7).

» Typical parameterization (omitting biases)

scoreg (1.7, Y,y t) = lencg(zi.r) W liy + [ T lyy

Txd  4x|V| NZEING

» ency(x1.7): Any encoding of z1.7, e.g., BILSTM (Lample et al,
2016)

» Extra learnable parameters in the "CRF layer”: W for
computes per-position label logits, T" for label transition scores

» Flexible, e.g., could define transition scores to be v;—Avy/
where v, € R% is a learnable embedding of label y
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Undirected Graphical Models (UGMs/MRFs)

» CREF is a special case of a undirected graphical model
(UGM), aka. Markov random field (MRF)
» Defines a joint distribution over variables that factorizes over

maximal cliques C equipped with nonnegative potential
functions ¢

» Clique: A subset of nodes in MRF fully connected

» Maximal clique: A clique that loses full connectivity if any
node is added

@‘® @ Pr(Xi:6) = %¢1:3(X1:3)1/13:6(X3:6)

>0 >0

@ ®~@ Z = Z¢1:;($1:3)¢3:6_($3:6)

Z1:6
» More concisely, can write Pr(X) o< [[~%c(Xc¢), and use
factor graph notation (square node fully connects neighbors)
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Marginalization and Inference in MRFs

» Again, we typically observe part of a MRF. Then we work
with a conditional joint distribution:

@ @ @ Pr(X1.2, X4:6| X3 =¢) = mwlz3(xlX2C)¢3:6(X3:6)
@ @ @ Z(Xz=c)= > vra(13)sc(zasc)

» MRF again poses general structured prediction problems, like
» Marginalize: Pr(X;5 = /| X5 =¢)
> Infer: argmax,, , .. Pr(Xi2 = 212, X4:6 = 246/ X3 = ¢)

» Variable elimination (VE). General “recipe” to solve these
problems exactly in O (7, m ™) time (assuming no cycles)
where

> Ninter: Number of variables in MRF that we're inferring
» m: Number of possible values that variables can take
» Chax: Size of the largest maximal clique

» Too abstract to be directly useful (e.g., must specify

elimination ordering), but provides a unified framework of

structured prediction (e.g., forward, Viterbi are VE on chains)
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CRFs as Conditional MRFs (Hence the Name)
» Given z1.3, CRF considers the following MRF

» It has a clique at each step t consisting of at most two
unobserved variables, with potential function defined as

¢t($1:Ta Y, y/) = eXP(e"CG(ﬂflzT’ Y, y,7 t)) >0

» Distribution defined by

T, (13, Yi—1, ve)
3
Zy{ﬁe)ﬂ” [T Ye(z13, 9,1, v1)
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General Tagging with MRFs
» No independence assumptions: O(T'[Y'|)

OWOBO,
Po(y1:3|71:3) o< exp(scoreg(x1:3,y1:3))
@ Cmax =3

» Greedy tagging (i.e., softmax per p05|t|on) O(TY])
OO0
po(y1:3|71:3) o HGXP scoreg(71:3, Yt 1))
t=1
@ Cmax =1

» First-order CRF: O(T'|Y|?)

t=1
@ Cmax =2
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More Facts About Graphical Models
» Any (DAG-structured) DGM can be expressed by an MRF

S

(Image credit: Yunshu Liu)

» Forward algorithm for HMM: VE with left-to-right elimination
ordering
» Generalizable to trees

» VE applicable only if there's no cycle (e.g., sequences, trees)

> If cycle between unobserved variables, O(ninfe,mcm") runtime
guarantee doesn’t hold, e.g., marginalization intractable in

» Can technically combine factors until there's no cycle and

apply VE, but that's no better than brute-force

» Efficient approximations possible: loopy belief propagation
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