
CS 533: Natural Language Processing

Marginal Decoding,
Conditional Random Fields

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/25

Review: Tagging by Generative Probabilistic Tagger

I Tagging: Map sentence x1:T = (x1 . . . xT) ∈ VT to label
sequence y1:T = (y1 . . . yT) ∈ YT

I Generative model: joint distribution, chain rule

pθ(x1:T , y1:T) =

T∏
t=1

pθ(yt|x<t, y<t)× pθ(xt|x<t, y≤t)× pθ(y∗|x≤T , y≤T)

I (First-order) Hidden Markov models (HMMs)

pθ(x1:T , y1:T) =

T∏
t=1

tθ(yt|yt−1)︸ ︷︷ ︸
transition prob

× oθ(xt|yt)︸ ︷︷ ︸
emission prob

×tθ(y∗|yT)

I Simplest form of labeled sequence generation, marginalization
and inference tractable

y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

Karl Stratos CS 533: Natural Language Processing 2/25

Review: Exact Marginalization by Forward Algorithm

I Marginalization. What is the marginal probability of x1:T
under the model?

pθ(x1:T) =
∑

y1:T∈YT

pθ(x1:T , y1:T)

I Forward algorithm. Fills out table π ∈ RT×|Y| defined as

π(t, y) =
∑

y1...yt∈Yt: yt=y

pθ(x1 . . . xt, y1 . . . yt)

by computing for all y, y′ ∈ Y and t > 1 left-to-right

π(1, y) = tθ(y|y0)× oθ(x1|y)

π(t, y′) =
∑
y∈Y

π(t− 1, y)× tθ(y′|y)× oθ(xt|y′)

I Return pθ(x1:T) =
∑

y∈Y π(T, y)× tθ(y∗|y)
Karl Stratos CS 533: Natural Language Processing 3/25

Review: Exact Inference by Viterbi Algorithm

I Inference. What is the most probable y1:T ∈ YT of x1:T
under the model?

y∗1:T = argmax
y1:T∈YT

pθ(x1:T , y1:T)

I Viterbi algorithm. Fills out table π ∈ RT×|Y| defined as

π(t, y) = max
y1...yt∈Yt: yt=y

pθ(x1 . . . xt, y1 . . . yt)

Same as forward, only switch sum to max. Then
pθ(y

∗
1:T |x1:T) = maxy∈Y π(T, y)× tθ(y∗|y)

I But this only gives us max probability, must keep a
backtracking table to record the label path during Viterbi

β(t, y′) = argmax
y∈Y

π(t− 1, y)× tθ(y′|y)× oθ(xt|y′)

Karl Stratos CS 533: Natural Language Processing 4/25

Constrained Inference

I Easy to modify Viterbi to only consider certain paths, e.g.,
I NER. If yt = B-PER, then we must have yt+1 ∈ {I-PER, O}.
I POS. For efficiency, only allow yt+1 ∈ Y(yt) where Y(yt) is

the set of tags following yt in training data

(Image credit: Jurafsky and Martin)

Karl Stratos CS 533: Natural Language Processing 5/25

Directed Graphical Models (DGMs)

I HMM is a special case of a directed graphical model
(DGM), aka. Bayesian network (Bayes net)

I Directed acyclic graph (DAG) representing a joint distribution,
(lack of) directed edges encode conditional independence
assumptions

I An example DGM (example credit: David Blei)

X1

X2

X3

X4

X5

X6 Pr(X) =Pr(X1) Pr(X2|X1) Pr(X3|X1)

Pr(X4|X2) Pr(X5|X3) Pr(X6|X2, X5)

I Represents a joint distribution over X = (X1 . . . X6)
I Each Xi ∈ Xi has its own possible values
I What independence assumptions are we making here?

I Again, two central calculations
I Marginalization: e.g., Pr(X2 = c) =

∑
x:x2=c

Pr(X = x)
I Inference: x∗ = argmaxx Pr(X = x)

Karl Stratos CS 533: Natural Language Processing 6/25

Examples of DGM

I n-gram language models with Markov order 1

X1 X2 X3

Pr(X) = Pr(X1) Pr(X2|X1) Pr(X3|X2)

I HMMs
Y1Y0

X1

Y2

X2

Y3

X3

Y∗

Pr(X,Y) =
3∏

t=1

Pr(Yt|Yt−1) Pr(Xt|Yt) Pr(Y∗|Y3)

I Trees
X1

X2 X3

X4 X5

Pr(X) = Pr(X1) Pr(X2|X1) Pr(X3|X1) Pr(X4|X3) Pr(X5|X3)

I General DAGs

X1

X2

X3

X4

X5

X6

Pr(X) =Pr(X1) Pr(X2|X1) Pr(X3|X1)

Pr(X4|X2) Pr(X5|X3) Pr(X6|X2, X5)

Karl Stratos CS 533: Natural Language Processing 7/25

Observed vs Unobserved Variables in DGM

I Typically some part of a DGM is observed

X1

X2

X3

X4

X5

X6

X2 = x2, X3 = x3

Y1Y0

X1

Y2

X2

Y3

X3

Y∗

X1 = x1, X2 = x2, X3 = x3
I We want to calculate various probabilities in the presence of

observed variables, such as
I Left: Probability of the observed event Pr(X2 = x2, X3 = x3)
I Right: Highest probability of label sequence

maxy1,y2,y3 Pr(X1 = x1, X2 = x2, X3 = x3, Y1 = y1, Y2 =
y2, Y3 = y3). This is what Viterbi computes.

I Conditional independence assumptions in DGMs make
efficient marginalization/inference feasible

I Recall: X,Z independent (X ⊥⊥ Z) conditioned on Z iff

Pr(X = x|Y = y, Z = z) = Pr(X = x|Y = y)

for all values of x, y, z (equiv. p(x, y|z) = p(x|z)p(y|z))
Karl Stratos CS 533: Natural Language Processing 8/25

Rules of Conditional Independence in DGMs

I The future is independent of the past given the present (Markov assumption)

X Y Z

X 6⊥⊥ Z

X Y Z

X ⊥⊥ Z | Y
I Children are independent of each other given their parent

Y

X Z

X 6⊥⊥ Z

Y

X Z

X ⊥⊥ Z | Y
I Causes are independent, but become dependent if effect is observed

Y

X Z

X ⊥⊥ Z

Y

X Z

X 6⊥⊥ Z | Y
I Exercise: Verify independence claims mathematically, and think of examples for

non-independence claims

Karl Stratos CS 533: Natural Language Processing 9/25

Marginal Decoding

I Back to HMM: Given x1:T predict for each position t = 1 . . . T

y+t = argmax
y∈Y

∑
y1:T∈YT :yt=y

pθ(x1:T , y1:T)︸ ︷︷ ︸
“marginal” µ(t, y)

Y1Y0

X1

Y2

X2

Y3

X3

Y∗

I This is known as marginal decoding. This is in general not
the same as Viterbi decoding

I Better for per-position performance metric like POS tagging
accuracy (can yield 1-2% improvement)

I Worse for structure modeling like F1 in NER (why?)

I Central calculation: How to compute µ(t, y) for all t = 1 . . . T
and y ∈ Y?

I Answer: Application of forward and backward probabilities
Karl Stratos CS 533: Natural Language Processing 10/25

Decomposition of Marginal Under HMMs

y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

Future independent of past given yt by Markov assumption

pθ(x1:T , y1:T)
∗
= pθ(x≤t, y≤t)× pθ(x>t, y>t|yt)

Therefore marginal given by

µ(t, y) =
∑

y1:T : yt=y

pθ(x≤t, y≤t)× pθ(x>t, y>t|yt)

=

(∑
y1:t: yt=y

pθ(x≤t, y≤t)

)
︸ ︷︷ ︸

Forward prob!

(∑
y>t

pθ(x>t, y>t|yt = y)

)
︸ ︷︷ ︸

How to compute this?

Karl Stratos CS 533: Natural Language Processing 11/25

Backward Algorithm

I DP similar to forward, but instead fills out right-to-left

~π(t, y) =
∑

yt+1...yT∈YT−t

pθ(xt+1 . . . xT , yt+1 . . . yT | yt = y)

I Base case: ~π(T, y) = tθ(y∗|y)
I Main body: For t = T − 1 . . . 1, for y ∈ Y,

~π(t, y) =
∑
y>t

pθ(x>t, y>t | yt = y)

∗
=
∑
y>t+1

∑
y′

pθ(x>t+1, y>t+1 | yt+1 = y′)× tθ(y|y′)× oθ(xt|y′)

=
∑
y′

~π(t+ 1, y′)︸ ︷︷ ︸
already computed

×tθ(y|y′)× oθ(xt|y′)

I Runtime same as forward: O(T |Y|2)
Karl Stratos CS 533: Natural Language Processing 12/25

Summary of Marginal Decoding
Assuming HMM parameters defining transition tθ(y

′|y) and
emission oθ(x|y) probabilities, given sentence x1:T ∈ VT ,

1. Run forward algorithm to compute for all t, y

π(t, y) =
∑

y1...yt∈Yt: yt=y

pθ(x1 . . . xt, y1 . . . yt)

2. Run backward algorithm to compute for all t, y

~π(t, y) =
∑

yt+1...yT∈YT−t

pθ(xt+1 . . . xT , yt+1 . . . yT | yt = y)

3. For all t, y calculate the marginal probability by

µ(t, y) = π(t, y)× ~π(t, y)

4. For each position t = 1 . . . T , predict as the label of xt

y+t = argmax
y∈Y

µ(t, y)

Karl Stratos CS 533: Natural Language Processing 13/25

Backpropagation as Backward Algorithm
I Recall: In computation graph DAG with output scalar variable
xω, backpropagation computes zi := ∇xixω by

zi =
∑

j∈ch(i)

zj ×∇xixj (1)

I Uses the fact that i affects ω only through its children nodes
I Equivalent/alternative view: (1) is “backward algorithm” for

zi =
∑

(i1...in)∈P (i,ω)

∇xin−1xin × · · · × ∇xi1xi2 (2)

where P (i, ω) is an exponentially large set of all possible
paths from i to ω, applies chain rule on each entire path.

I Why: Just rewrite (2) using DAG structure

∑
j∈ch(i)

 ∑
(i2...in)∈P (j,ω)

∇xin−1xin × · · · × ∇xi2xi3
×∇xixj

Karl Stratos CS 533: Natural Language Processing 14/25

Discriminative Tagger

I Model defines a conditional distribution pθ(y1 . . . yT |x1 . . . xT)
over label sequences, given a sentence

I Cannot generate x1 . . . xT , only predict label sequences
I But if we only care about tagging, discriminative is sufficient
I Discriminative possibly more effective than generative (esp

with small labeled data), no need to learn input distribution

I Model: scoreθ : VT × YT → R assigning score to any
sentence paired with a tag sequence

I Training: Minimize cross-entropy loss H(pop, pθ) where

pθ(y1:T |x1:T) =
exp(scoreθ(x1:T , y1:T))∑

y′1:T∈YT exp(scoreθ(x1:T , y′1:T))

I Inference: Given x1:T return argmaxy1:T∈YT scoreθ(x1:T)

I This is just a classifier, except that the label space is YT
I How to handle “giant softmax”, find argmax label sequence?
I Same approach: Make computation tractable by introducing

structural assumptions, but now non-probabilistically
Karl Stratos CS 533: Natural Language Processing 15/25

Markov Assumption in a Discriminative Tagger

I We define the score function to factorize as

scoreθ(x1:T , y1:T) =
T∑
t=1

scoreθ(x1:T , yt−1, yt, t)

This model is called (first-order) conditional random field
(CRF). Will discuss why later

I Only scores a label pair y, y′ ∈ Y at each step t
I But can still access the entire sentence (not just left/current

input)! This is a major advantage of a discriminative model.

I Implications: Model distribution now

pθ(y1:T |x1:T) =
1

Zθ(x1:T)

T∏
t=1

exp(scoreθ(x1:T , yt−1, yt, t))︸ ︷︷ ︸
t-th nonnegative “potential function”

Zθ(x1:T) :=
∑

y′1:T∈YT exp(scoreθ(x1:T , y
′
1:T)) “partition

function”. Infer argmaxy1:T∈YT

∑T
t=1 scoreθ(x1:T , yt−1, yt, t)

Karl Stratos CS 533: Natural Language Processing 16/25

CRF Loss

I To optimize cross-entropy loss, given labeled sequence
x1:T , y1:T only need to compute

− log pθ(y1:T |x1:T) = logZθ(x1:T)︸ ︷︷ ︸
log partition function

−
T∑
t=1

scoreθ(x1:T , yt−1, yt, t)

I Central calculation: how to compute the log partition
function? Again DP possible by Markov assumption

I Forward algorithm: Fill DP table for all t, y′

π(t, y′) = log

 ∑
y′1:t∈Yt: y′t=y

′

exp(scoreθ(x1:T , y
′
1:t))

where scoreθ(x1:T , y

′
1:t) =

∑t
l=1 scoreθ(x1:T , y

′
l−1, y

′
l, l).

Then logZθ(x1:T) = log(
∑

y′∈Y π(T, y
′)).

Karl Stratos CS 533: Natural Language Processing 17/25

Forward Algorithm for Computing Log Partition

I Base case: π(1, y) = scoreθ(x1:T , y0, y, 1) for all y ∈ Y
I Main body: For t = 2 . . . T , for all y′ ∈ Y,

π(t, y′) = log

(∑
y′1:t∈Yt: y′t=y

′

exp(scoreθ(x1:T , y
′
1:t))

)

∗
= log

(∑
y∈Y

 ∑
y′1:t−1∈Yt−1: y′t−1=y

exp(scoreθ(x1:T , y
′
1:t−1))

× exp(scoreθ(x1:T , y, y

′, t))

)
= log

(∑
y∈Y

exp(π(t− 1, y) + scoreθ(x1:T , y, y
′, t))

)

I Runtime: O(T |Y|2), quadratic dependence on label set size

Karl Stratos CS 533: Natural Language Processing 18/25

Viterbi Algorithm for CRFs

I Goal: Find argmax of
∑T

t=1 scoreθ(x1:T , yt−1, yt, t)

I DP table π(t, y) = maxy1:t∈Yt: yt=y scoreθ(x1:T , y1:t)

I Same base case: π(1, y) = scoreθ(x1:T , y0, y, 1) for all y ∈ Y
I Main body: For t = 2 . . . T , for all y′ ∈ Y,

π(t, y′) = max
y∈Y

π(t− 1, y) + scoreθ(x1:T , y, y
′, t)

I Recover the actual argmax label sequence by backtracking:

β(t, y′) = argmax
y∈Y

π(t− 1, y) + scoreθ(x1:T , y, y
′, t)

y∗T = argmaxy π(T, y), y
∗
T−1 = β(T, y∗T), . . ., y

∗
1 = β(2, y∗2)

Karl Stratos CS 533: Natural Language Processing 19/25

Neural Parameterization of CRF

I Recall: We just need to define scoreθ(x1:T , y, y
′, t), from

which we derive scoreθ(x1:T , y1:T).

I Typical parameterization (omitting biases)

scoreθ(x1:T , y, y
′, t) = [encθ(x1:T)︸ ︷︷ ︸

T×d

W︸︷︷︸
d×|Y|

]t,y′ + [T︸︷︷︸
|Y|×|Y|

]y,y′

I encθ(x1:T): Any encoding of x1:T , e.g., BiLSTM (Lample et al.,

2016)

I Extra learnable parameters in the “CRF layer”: W for
computes per-position label logits, T for label transition scores

I Flexible, e.g., could define transition scores to be v>y Avy′

where vy ∈ Rd′ is a learnable embedding of label y

Karl Stratos CS 533: Natural Language Processing 20/25

Undirected Graphical Models (UGMs/MRFs)

I CRF is a special case of a undirected graphical model
(UGM), aka. Markov random field (MRF)

I Defines a joint distribution over variables that factorizes over
maximal cliques C equipped with nonnegative potential
functions ψC

I Clique: A subset of nodes in MRF fully connected
I Maximal clique: A clique that loses full connectivity if any

node is added

X1 X3

X2

X4

X5 X6

Pr(X1:6) =
1

Z
ψ1:3(X1:3)︸ ︷︷ ︸

≥0

ψ3:6(X3:6)︸ ︷︷ ︸
≥0

Z =
∑
x1:6

ψ1:3(x1:3)ψ3:6(x3:6)

I More concisely, can write Pr(X) ∝
∏
C ψC(XC), and use

factor graph notation (square node fully connects neighbors)

X1 X3

X2

X4

X5 X6

Pr(X1:6) ∝ ψ1:3(X1:3)ψ3:6(X3:6)

Karl Stratos CS 533: Natural Language Processing 21/25

Marginalization and Inference in MRFs
I Again, we typically observe part of a MRF. Then we work

with a conditional joint distribution:

X1 X3

X2

X4

X5 X6

Pr(X1:2, X4:6|X3 = c) =
1

Z(X3 = c)
ψ1:3(X1X2c)ψ3:6(X3:6)

Z(X3 = c) =
∑

x1:6:x3=c

ψ1:3(x1:3)ψ3:6(x3:6)

I MRF again poses general structured prediction problems, like
I Marginalize: Pr(X5 = c′|X3 = c)
I Infer: argmaxx1:2,x4:6

Pr(X1:2 = x1:2, X4:6 = x4:6|X3 = c)

I Variable elimination (VE). General “recipe” to solve these
problems exactly in O(ninferm

Cmax) time (assuming no cycles)
where

I ninfer: Number of variables in MRF that we’re inferring
I m: Number of possible values that variables can take
I Cmax: Size of the largest maximal clique

I Too abstract to be directly useful (e.g., must specify
elimination ordering), but provides a unified framework of
structured prediction (e.g., forward, Viterbi are VE on chains)

Karl Stratos CS 533: Natural Language Processing 22/25

CRFs as Conditional MRFs (Hence the Name)

I Given x1:3, CRF considers the following MRF

Y1Y0 Y2 Y3

X1:3

I It has a clique at each step t consisting of at most two
unobserved variables, with potential function defined as

ψt(x1:T , y, y
′) = exp(encθ(x1:T , y, y

′, t)) ≥ 0

I Distribution defined by

pθ(y1:3|x1:3) =
∏3
t=1 ψt(x1:3, yt−1, yt)∑

y′1:3∈Y3

∏3
t=1 ψt(x1:3, y

′
t−1, y

′
t)

Karl Stratos CS 533: Natural Language Processing 23/25

General Tagging with MRFs
I No independence assumptions: O(T |Y |T)

Y1 Y2 Y3

X1:3

pθ(y1:3|x1:3) ∝ exp(scoreθ(x1:3, y1:3))

Cmax = 3

I Greedy tagging (i.e., softmax per position): O(T |Y |)
Y1 Y2 Y3

X1:3

pθ(y1:3|x1:3) ∝
3∏
t=1

exp(scoreθ(x1:3, yt, t))

Cmax = 1

I First-order CRF: O(T |Y |2)

Y1Y0 Y2 Y3

X1:3

pθ(y1:3|x1:3) ∝
3∏
t=1

exp(scoreθ(x1:3, yt−1, yt, t))

Cmax = 2

Karl Stratos CS 533: Natural Language Processing 24/25

More Facts About Graphical Models

I Any (DAG-structured) DGM can be expressed by an MRF

(Image credit: Yunshu Liu)

I Forward algorithm for HMM: VE with left-to-right elimination
ordering

I Generalizable to trees

I VE applicable only if there’s no cycle (e.g., sequences, trees)
I If cycle between unobserved variables, O(ninferm

Cmax) runtime
guarantee doesn’t hold, e.g., marginalization intractable in

X1 X3

X2

X4

X5 X6

I Can technically combine factors until there’s no cycle and
apply VE, but that’s no better than brute-force

I Efficient approximations possible: loopy belief propagation
Karl Stratos CS 533: Natural Language Processing 25/25

