
CS 533: Natural Language Processing

Convolutional, Recurrent and
Attention-Based Architectures

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/28

Review: Deep Learning and Universality

I A system that employs a hierarchy of features of the input,
learned end-to-end jointly with the predictor.

f(x; θ1, θ2, . . . , θL) = FL(FL−1(· · ·F2(F1(x; θ1); θ2) · · ·); θL)

I We will refer to Fk as layer k

I E.g., deep learning for classification:

fc(x;w,b, θ1, θ2, . . . , θL) = wc · f(x; θ1, θ2, . . . , θL) + bc

I All parameters (w,b, θ1, θ2, . . . , θL) are learned jointly
I We can think of f(x; θ1, θ2, . . . , θL) as learned features for x

or a learned representation of x (doesn’t depend on the class
being scored)

I Universality. Feedforward with a nonlinear layer can express
any mapping (given enough hidden units).

Karl Stratos CS 533: Natural Language Processing 2/28

Review: Computation Graph

Express any differentiable function as a directed acyclic graph
(DAG) and automatically calculate gradients for all nodes.

xent

+ y

matmul b

W g

+

matmul a

U x

I Forward. Populate values in
topological order.

I Backward. Populate gradients in
reverse topological order by the
chain rule.

zi =
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi︸ ︷︷ ︸
Jacobian of f j wrt. xi

∣∣∣∣
xjI=a

j
I

Use the stored gradients to update parameters.

Karl Stratos CS 533: Natural Language Processing 3/28

Training Tips

I Regularization: Dropout, label smoothing, layer normalization

I Initialization: Uniform, normal, Xavier, Kaiming, and others

I Optimization: Appropriate learning rates, gradients with
momentum, gradient clipping

I Ensembling: Average many stochastically trained neural
models for variance reduction and improved generalization.

I More tricks:
I Gradient accumulation: Make batch size G times larger

without using more memory by accumulating gradients over G
batches before updating weights.

I Residual connection: Use encθ(x) + x to propagate gradient
directly to x, useful with deep networks (hidden dim must
equal input dim).

Karl Stratos CS 533: Natural Language Processing 4/28

Review: Need for Specialized Neural Architectures

I Feedforward implicitly assumes the input is a single vector.

I NLP: Input is a sequence!
I Option 1: BOW representation

I Loses lots of information (e.g., ordering), high-dimensional

I Option 2: Giant feedforward with input dimension = max
sequence length

I Computationally intractable, too many parameters to learn

I Solution: Develop specialized architectures that can handle
variable input lengths.

I Starting point: word embeddings
I Learn a dense low-dimensional vector for each word type.

Karl Stratos CS 533: Natural Language Processing 5/28

Word Embeddings

x

y

z

10
0

 poodle

01
0

 terrier

00
1

 frog

||poodle− terrier||
= ||terrier− frog||
= ||frog− poodle||

poodle

terrier

frog

||poodle− terrier||
� ||poodle− frog||

Generalization at word level!

Karl Stratos CS 533: Natural Language Processing 6/28

Embedding Matrix in Practice

I Part of model parameter θ to learn (aka. “lookup table”)

I E ∈ Rdw×V where V = |V| is the vocabulary size and dw is
the word embedding dimension (e.g., 128, 256, 512)

I More generally can embed any features
I Example: n-grams, special indicators (language, beginning/end

of a span, etc.)

I Efficient lookup operation

E :

03
2

 7→
0.7 −0.1 0.3 0.1
0.2 0.1 0.1 0.7
0.0 0.8 −0.4 0.6

I Very sparse updates: only a few columns of E updated on a

single batch

I Special padding token: E(<pad>) = (0, . . . , 0)

Karl Stratos CS 533: Natural Language Processing 7/28

Continuous Bag-of-Words (CBOW) Encoder

I encθ : V+ → Rdw defined by

encθ(x1 . . . xT) =
1

T

T∑
t=1

E(xt)

I Optionally apply additional layers (e.g.,
encθ(x1 . . . xT) = tanh(W 1

T

∑T
t=1E(xt) + b)).

I Differentiable in E and can be fed into a linear classifier to
learn end-to-end

I Pros. Simple, natural continuous extension of bag-of-words
(BOW) representation (≈ feedforward on BOW)

I Cons. Like BOW, CBOW is incapable of modeling word
ordering.

Karl Stratos CS 533: Natural Language Processing 8/28

Convolutional Layer

I Idea: Slide an n-gram filter (aka. “kernel”) across text to
identify a certain aspect from local patterns

I Example: Trigram filter F3 “activates” at negative sentiment
I [the movie was] not super good 7→ −0.2
I the [movie was not] super good 7→ −0.1
I the movie [was not super] good 7→ 0.3
I the movie was [not super good] 7→ 1.8

Take 1.8 is the final output of F3 on the sentence (large value
means the filter is activated).

I Sliding can be implemented efficiently in parallel.

I Learnable parameter: U ∈ R3×dw defining

F3(x1 . . . xT) =
T−3+1
max
t=1

g

∑
i,j

[U︸︷︷︸
3×dw

�︸︷︷︸
elt-wise multi.

E(xt, xt+1, xt+2)︸ ︷︷ ︸
3×dw

]i,j

g is a nonlinear function (e.g., ReLU). U reused for all inputs

Karl Stratos CS 533: Natural Language Processing 9/28

Convolutional Neural Networks (CNNs)

I Learn K “types” of trigram filter F3 = (F
(1)
3 . . . F

(K)
3)

I Each type expected to learn different aspects
I Depends on the learning problem (e.g., positive and negative

sentiments for sentiment classification)
I Certain key phrases activate certain filters (“is good .”)

I Treated as a K-dimensional encoder F3 : V+ → RK .

I General CNNs: Multiple n-grams (e.g., n ∈ {3, 4, 5}) and
concatenate outputs

CNNn∈{3,4,5},K(x1 . . . xT) =

F3(x1 . . . xT)
F4(x1 . . . xT)
F5(x1 . . . xT)

 ∈ R3K

Treated as a WK-dimensional encoder where W is the
number of n values

Karl Stratos CS 533: Natural Language Processing 10/28

Variations of CNNs

I Stacking: multiple convolutional layers stacked on each other

I Stride: Skip ahead when sliding (previously stride 1), reduces
output dim

I Mean pooling: Instead of taking max activation, average all
activations?

Stride > 1 + stacking: learn progressively “higher-level” patterns

(Image credit: Eisenstein)

“Dilated” CNN with 3 conv layers, stride 2

Karl Stratos CS 533: Natural Language Processing 11/28

Computer Vision and CNNs

I CNNs originated from image processing.

I Motivation: translation invariance (can have bird appear
anywhere in the image)

I Straightforward application to NLP by treating text as
1-dimensional image

I Same motivation: can have “not good” appear anywhere

I Cons. Still cannot model word ordering beyond filter sizes.

Karl Stratos CS 533: Natural Language Processing 12/28

Recurrent Neural Networks (RNNs)

I Idea: Read text x1 . . . xT (already word embeddings for
notational convenience) left-to-right, updating internal state

h0 = (0, . . . , 0)

h1 = RNNθ(h0, x1)

h2 = RNNθ(h1, x2)

...

hT = RNNθ(hT−1, xT)

I RNNθ : Rdh ×Rdw → Rdh is a feedforward (“RNN cell”), e.g.,

RNNθ(ht−1, xt) = tanh (Wxt + V ht−1 + b)

I ht ∈ Rdh : function of x1 . . . xt

ht = RNNθ(· · ·RNNθ(RNNθ(0d, x1), x2), · · · , xt)
Karl Stratos CS 533: Natural Language Processing 13/28

Stacked RNNs

I Number of RNN layers K

I Stacked RNN cell RNNθ : RKdh × Rdw → RKdh

RNNθ(xt, ht−1 = (h
(1)
t−1 . . . h

(K)
t−1)) = (h

(1)
t . . . h

(K)
t)

consisting of K RNN cells

h
(1)
t = RNN

(1)
θ (h

(1)
t−1, xt) RNN

(1)
θ : Rdh × Rdw → Rdh

h
(2)
t = RNN

(2)
θ (h

(2)
t−1, h

(1)
t) RNN

(2)
θ : Rdh × Rdh → Rdh

...

h
(K)
t = RNN

(K)
θ (h

(K)
t−1 , h

(K−1)
t) RNN

(K)
θ : Rdh × Rdh → Rdh

I Maps x1 . . . xT to h1 . . . hT ∈ RKdh
I Often just use the final layer h

(K)
1 . . . h

(K)
T ∈ Rdh

Karl Stratos CS 533: Natural Language Processing 14/28

Exploding/Vanishing Gradient Problems

I In general, deep networks with multiplicative weights get
gradients in exponential form∣∣∣∣∂wnx∂x

∣∣∣∣ = |wn| ≈ { 0 if |w| < 1 (“vanishes”)
∞ if |w| > 1 (“explodes”)

I RNN: if x1 . . . xT is long, gradient of Loss(hT) wrt. variables
with small t will either vanish or explode.

I Solutions
I Gradient clipping
I Architectural modifications: maintain an extra “cell” state ct

that we carry over without losing signals (e.g., LSTM)

Karl Stratos CS 533: Natural Language Processing 15/28

Long Short-Term Memory (LSTM) Cell

I Parameters (omitting bias terms) U q, U c, Uo ∈ Rdh×dw ,
V q, V c, V o,W q,W o ∈ Rdh×dh

qt = σ (U qxt + V qht−1 +W qct−1)

ct = (1− qt)� ct−1 + qt � tanh (U cxt + V cht−1)

ot = σ (Uoxt + V oht−1 +W oct)

ht = ot � tanh(ct)

I Idea: Memory cells ct can carry long-range information (image

credit: Colah’s blog)

Network can choose
to make qt = 0!

I Cell states typically ignored: loss still defined using ht
Karl Stratos CS 533: Natural Language Processing 16/28

Bidirectional RNNs

Left-to-right RNN: ht is a function of xt′ for t′ ≤ t only
Bidirectional RNN: Make ht a function of all x1 . . . xT as follows.

−→
h 1

x1

−→
h 2

x2

−→
h 3

x3

←−
h 3

←−
h 2

←−
h 1

h1 h2 h3
I Left-to-right RNN:−−−→

RNNθ(x1 . . . xT) =
−→
h 1 . . .

−→
h T

I Right-to-left RNN:←−−−
RNNθ(xT . . . x1) =

←−
h T . . .

←−
h 1

I New representation of xt

ht = (
−→
h t,
←−
h T−t+1) ∈ R2dh

I Both RNNs learned jointly to
optimize some loss (in ht).

To get single vector, can average h1 . . . hT ∈ R2dh .

Karl Stratos CS 533: Natural Language Processing 17/28

Problems with Recurrent Architectures

Recurrent architectures are intuitive and effective.

I Compact recurrent cell updating an internal state is similar to
how humans read text.

I Sensitive to word ordering

I Performs well, especially with LSTM cells and bidirectional
variants

BUT
I Slow. Computation of h1 . . . hT cannot be parallelized

I Must compute ht−1 first before computing ht.

I Shallow bidirectionality. Even if bidirectional, only a
function of one side until the end of RNN computation

Karl Stratos CS 533: Natural Language Processing 18/28

Attention

I Key recent progress in deep learning (originated from NLP)

I Idea: Let the model select which input vectors to use, by
defining a distribution over them

I Three types of vector
I Query vector: q ∈ Rd
I Key/value vectors: (k1, v1) . . . (kT , vT) ∈ Rd × Rd

I Sometimes key/value collectively called memory bank M

I Compute an embedding from M “attended” by q

(p1 . . . pT) = softmax(q>k1, . . . , q
>kT)

Attn(q,M) :=
T∑
t=1

ptvt

Karl Stratos CS 533: Natural Language Processing 19/28

Attention in Matrix Form

Input

I Q = (q1 . . . qT ′) ∈ RT ′×d: T ′ query vectors as rows

I K = (k1 . . . kT) ∈ RT×d: T key vectors as rows

I V = (v1 . . . vT) ∈ RT×d: T value vectors as rows

Output

I A = (a1 . . . aT ′) ∈ RT ′×d: at = Attn(qt,M = (K,V))

Compute A = Attn(Q,K, V) efficiently in matrix form:

A︸︷︷︸
T ′×d

= softmax︸ ︷︷ ︸
row-wise

(
Q︸︷︷︸

T ′×d

K>︸︷︷︸
d×T

)
V︸︷︷︸
T×d

Karl Stratos CS 533: Natural Language Processing 20/28

Multi-Head Attention

I Idea: Make H types of attention (“heads”)
I May learn different attention behaviors.

(0.7, 0.1, 0.1, 0.0) (head 1)

(0.0, 0.1, 0.5, 0.4) (head 2)

I Unlike raw attention, there are learnable parameters.

1. For each type τ ∈ {q, k, v}: Linear function

f
(τ,i)
θ : Rd → Rd/H for i = 1 . . . H (assume d is divisible by H)

2. Linear function gθ : Rd → Rd

I Given Q ∈ RT ′×d and K,V ∈ RT×d, compute

AttnHθ (Q,K, V) = gθ
(H⊕
i=1︸︷︷︸
concat

Attn(f
(q,i)
θ (Q)︸ ︷︷ ︸

d/H

, f
(k,i)
θ (K)︸ ︷︷ ︸

d/H

, f
(v,i)
θ (V))︸ ︷︷ ︸

d/H

)

Karl Stratos CS 533: Natural Language Processing 21/28

Application: Self-Attention Encoder

I Initial word embeddings X = (x1 . . . xT) ∈ RT×d

I Want new embeddings Z = (h1 . . . hT) ∈ RT×d such that ht
is a function of all x1 . . . xT

I Self-attention: Use X as key, query, value at the same time!

Z = AttnHθ (X,X,X)

I Multi-head attention parameters will “specialize” X internally.

I Unlike recurrent, ht has direct connection to every input.

h

x

h

x

recurrent self-attention

Karl Stratos CS 533: Natural Language Processing 22/28

Transformer Encoder (Vaswani et al., 2017)

I Do self-attention many times, with other tricks like dropout,
residual connection, layer normalization.

I There is no “right” implementation, other than the general
importance of multiple applications of self-attention.

I Example: Given X = Z0 ∈ RT×d, for layer l = 1 . . . 6,
compute using layer-specific parameters

Nl−1 = LayerNormalizationθ(Zl−1)

Hl = AttnHθ (Nl−1, Nl−1, Nl−1)

Ẑl = Dropout0.1(Hl) + Zl−1

Zl = NonlinearTransformation(Ẑl)

Use Z6 ∈ RT×d as final d-dimensional embeddings of the
input tokens.

I To get a single vector, can either average or take the first row.

Karl Stratos CS 533: Natural Language Processing 23/28

Bidirectional RNNs vs Transformers

h

x x

h

not bidirectional until later deeply bidirectional

Transformer: “vertically recurrent”

I Intuition: Can refine its state for many rounds (multi-hop
reasoning)

Karl Stratos CS 533: Natural Language Processing 24/28

Self-Attention Visualization (Vaswani et al., 2017)

Layer 5 and 6, one of the “heads”

Different heads learn different weights

Karl Stratos CS 533: Natural Language Processing 25/28

Details: Position Encodings, Masking

I Attention does not differentiate positions.

Attn(q, ((k1, k2), (v1, v2))) = Attn(q, ((k2, k1), (v2, v1)))

I Solution: Explicitly model positions at input level. Various
approaches:

I Absolute positions: Introduce an embedding πi ∈ Rd for
positions i = 1, 2, . . . , and use (x1+π1, . . . , xT +πT) as input.

I Relative positions: Introduce an embedding πi ∈ Rd for
offsets i = −k, . . . , k between key and query and use it when
computing logits between key-query pairs.

I If we don’t want q to attend to certain position i, can specify
that by “masking” logits

Mask{2,3}(q
>k1, q

>k2, q
>k3) = (q>k1,−∞,−∞)

Karl Stratos CS 533: Natural Language Processing 26/28

Details: Scaled Dot Product, Training

I In practice we scale dot products by 1/
√
d

Attn(Q,K, V) = softmax

(
QK>√

d

)
V

Helps stabilize the variance of dot products when d is large.
I Training transformers can be nontrivial. Original work needed

a very specific training setting
I Xavier uniform initialization
I Adam optimizer with non-default hyperparameters
I Learning rate schedule: manually change learning rate during

training (on top of Adam’s adaptive learning rate)

Karl Stratos CS 533: Natural Language Processing 27/28

Summary

Input: word embeddings, learnable vectors for distinct word types

I Averaging word embeddings: Simplest way to embed text,
but cannot model word ordering

I CNNs: Learn n-gram filters, still unable to model general
word ordering

I RNNs: Recurrent updates naturally model word ordering, but
cannot be parallelized and one-sided (or shallowly
bidirectional)

I Transformers: Make all inputs attend to all inputs directly
via self-attention, stacked to capture “deep” patterns (deeply
bidirectional), can be parallelized and made sensitive to word
ordering with position encodings, but tricky to train

Any of these encoders can be “plugged in” to optimize a
task-specific loss!

Karl Stratos CS 533: Natural Language Processing 28/28

