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Review: Language Models (LMs)
I Defines the probability of a sentence as a product of word

probabilities conditioning on history (chain rule):

pθ(x1 . . . xT ) = pθ(x1|〈bos〉)
× pθ(x2|〈bos〉, x1)
× pθ(x3|〈bos〉, x1, x2)× · · ·
× pθ(xT |〈bos〉, x1, x2, . . . , xT−1)
× pθ(〈eos〉|〈bos〉, x1, x2, . . . , xT−1, xT )

I Unsupervised and data-efficient: Each unlabeled sentence
x ∼ pop provides T + 1 labeled examples

(inputs, targets) = ((x0, x0:1, . . . , x0:T ), (x1, x2, . . . , xT+1))

I Trained by minimizing the empirical cross-entropy loss

Ĵ(θ) = − 1

N

M∑
i=1

Ti+1∑
t=1

log pθ(x
(i)
t |x

(i)
<t)
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Review: n-Gram vs Recurrent LMs

I n-gram LM: pop(xt|x<t) ≈ pθ(xt|xt−K . . . xt−1)
I Markov assumption. Next word only depends on past K

words
I Amounts to classifying an n-gram into a word: feedforward

(Bengio et al., 2003), transformer (e.g., GPT)

I Recurrent LM
I No Markov assumption, maintain a recurrent state ht−1 that

encodes all history (e.g., LSTM hidden state, transformer
output on entire history)

I In practice trained by backpropagation through time

I Perplexity: exp(H(pop(xt|x<t), pθ(xt|x<t))
I Branching factor/effective vocab size (V when random)
I Most words predictable from short history, being recurrent may

not yield visibly lower perplexity
I But truly minimizing perplexity (against diminishing returns)

will imply real language understanding
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Masked Attention in Transformer LM

I Big advantage of self-attention over recurrent: computation
over a sequence can be done in “one shot” during training

I Recurrent LM: 3 steps (cannot be parallelized)

〈bos〉 x1 x2 x3 ⇒ 〈bos〉 x1 x2 x3 ⇒ 〈bos〉 x1 x2 x3

I Transformer LM: 1 step

〈bos〉 x1 x2 x3

How? Simulate left-to-right during self-attention computation
by masking future words!

l00 l01 l02
l10 l11 l12
l20 l21 l22

 ⇒

l00 −∞ −∞
l10 l11 −∞
l20 l21 l22



I Masking only done for training, test time is actually
left-to-right predictions.

Karl Stratos CS 533: Natural Language Processing 4/28



Review: Search and Generation

I Most likely sentence under the model

x∗ = argmax
x1...xT∈VT , T∈{1...Tmax}

T+1∑
t=1

log pθ(xt|x<t)

I Generally intractable: Must search through O(V Tmax) possible
sequences

I Beam search. Approximate x∗ by keeping only β best
hypotheses at each time step

I Each step considers V β branches, runtime O(topβ(βV )Tmax)
I β = 1 greedy decoding, β = V Tmax exact search

I Generation: Sample sentence x ∼ pθ stepwise, lots of tricks to
calibrate randomness (softmax temperature, top-k/top-p
sampling, beam search variants)

Karl Stratos CS 533: Natural Language Processing 5/28



The Generality of “Language Models”

Generative Pretraining from Pixels (Chen et al., 2020)

Contextual generation to complete half-images

I “Vocabulary”: pixel values discretized by k-means clustering
Karl Stratos CS 533: Natural Language Processing 6/28



Conditional Language Models

I Conditional LM: Given a sequence x = (x1 . . . xT ), defines

pθ(y1 . . . yT ′ |x) =
T ′+1∏
t=1

pθ(yt|x, y<t)

I Everything is the same as LM except the conditioning part.
I Some context-specific jargons

I x source sequence, y = (y1 . . . yT ′) target sequence
I Encoder. First, encθ : VT → RD encodes all tokens in x into

a differentiable representation (details later)
I Decoder. In each step, decθ : RD ×Vt−1 → RV predicts next

word from the encoding and history by

pθ(yt|x, y<t) = softmaxyt(decθ(encθ(x), y<t))

I Encoder-decoder or sequence-to-sequence (seq2seq)
framework: Training encoder & decoder jointly to optimize a
function of pθ(y|x)
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A Universal Framework for Supervised Learning
Machine translation

And the programme has been implemented⇒ Le programme a été mis en application

Summarization

russian defense minister ivanov called sunday for the creation of a joint front for combating global terrorism
⇒ russia calls for joint front against terrorism

Data-to-text generation

TEAM WIN LOSS PTS FGPCT RB AS
Heat 11 12 103 49 47 27
Hawk 7 15 95 43 33 20

⇒ The Atlanta Hawks defeated the Miami Heat, 103-95, at Philips Arena on Wednesday. . .

Image captioning

⇒ the dog saw the cat

Dialogue/chatbot

If you could have dinner with one person, dead or alive, who would that be? That’s a tough one. I think
I’d have to go with Steve Jobs. I’d love to pick his brain. Ah, interesting choice. What do you know about
Steve Jobs? He was one of the most influential people in the history of technology. He was a visionary.
What questions would you ask him? ⇒ I’d want to know how he came up with the idea for the iPod. It
was so revolutionary at the time.
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LM vs Seq2Seq

I LM can also condition on the past (e.g., contextual text
generation)

I Sample from pθ(·|x1 . . . xJ) where x1 . . . xJ is a prompt.
I Amounts to running LM on x1 . . . xJ first and generating

from final state.

I What benefits from having an explicit source encoder? More
flexibility

I In LM, conditioning object is treated the same as
generation object and must be processed left-to-right
(e.g., xj cannot attend to x>j)

I In seq2seq, no longer have that constraint (e.g., can do
full self-attention over x1 . . . xJ)

I More generally, conditioning object may not be a
sequence (e.g., if image, use ResNet as encoder)

I Think of LM as a special case of seq2seq with constant source
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Encoder Architecture: Single Embedding

I Source encoder: encθ : VT → RD

I Original seq2seq paper: Sequence to Sequence Learning with Neural

Networks (Sutskever et al., 2014)

I Encoded T source tokens into a vector

encθ(x1 . . . xT ) = hT ∈ Rd

where hT is the last hidden state of a left-to-right LSTM
(later studies found last hidden state of a right-to-left
LSTM to work better)

I Kind of works, but not really well
I Too much happening in an entire sequence to capture

with a single vector

 You can’t cram the meaning of a

whole sentence into a single vector!

–Ray Mooney
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Encoder Architecture: Contextual Embeddings

I Instead of a single vector, encode T source tokens into T
contextual embeddings

encθ(x1 . . . xT ) = (h1 . . . hT ) ∈ RT×d

where h1 . . . hT can be defined in various ways

I Left-to-right/right-to-left/bidirectional RNN embeddings
I Convolutional neural network embeddings
I Transformer encoder embeddings

I Idea: Let the decoder work with individual tokens of the
source via attention

I This is the origin of the attention mechanism, proposed
in: Neural Machine Translation by Jointly Learning to Align and

Translate (Bahdanau et al., 2016)

I We will assume contextual embeddings for source
representation
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Decoder Architecture

I Stepwise target decoder decθ : RT×d × Vt−1 → RV
I At step t, maps contextual embeddings of x1 . . . xT and

target history y1 . . . yt−1 to logits over V
I Recall attention: Three types of vector

I Query vector: q ∈ Rd
I Key/value vectors: (k1, v1) . . . (kT , vT ) ∈ Rd × Rd

I Key/value collectively called memory bank M

I Compute an embedding from M “attended” by q

(p1 . . . pT ) = softmax(q>k1, . . . , q
>kT )

Attn(q,M) :=

T∑
j=1

pjvj

I Here, q is an encoding of y1 . . . yt−1; (kj , vj) is an embedding
of the j-th source token
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Example: LSTM Decoder With Input Feeding (Luong et al., 2015)

I Source encodings h = (h1 . . . hT ) ∈ RT×d

I Memory bank: M = {(kj , vj)}Tj=1 where kj = vj = hj (tying
key and value vectors)

I Step t = 1: Assumes y0 = 〈bos〉 given

q0 = LSTMθ(02d, [E(y0); 0d]))

z0 = Attn(q0,M)

h′0 = tanh(W [z0; q0]) decθ(h, y0) = E>h′0

I Step t = 2: Assumes y0, y1 given

q1 = LSTMθ(q0, [E(y1);h
′
0])

z1 = Attn(q1,M)

h′1 = tanh(W [z1; q1])) decθ(h, (y0, y1)) = E>h′1
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Illustration: Recurrent Decoder

A B C

Encoder

0

RNN

+ + =

1
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Visualization of Learned Attention Weights

Rows: target tokens (French), columns: source tokens (English)

Image credit: Bahdanau et al. (2016)
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Example: Convolutional Seq2Seq (Gehring et al., 2017)

I Both encoder & decoder parameterized by convolutional
blocks with filter size k

I Stacked to increase input field size

I E.g., stacking 6 blocks with filter size k = 5 allows the
model to condition on 25 tokens (5 + 4× 5) at each
prediction

I Motivation: Avoid recurrent computation, parallelize training

I Proposed lots of important ideas, used by transformer

I We can compute all target losses in one shot
I Repeated application of attention over multiple layers

(“attention with multiple hops”)
I Position embeddings
I Stabilization tricks for learning like normalization

Karl Stratos CS 533: Natural Language Processing 16/28



Illustration: Convolutional Seq2Seq (Gehring et al., 2017)
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Example: Transformer Decoder
I Recall multi-head attention layer: Given Q ∈ RT ′×d and
K,V ∈ RT×d, compute

AttnHθ (Q,K, V ) = gθ
( H⊕
i=1︸︷︷︸

concat

Attn(f
(q,i)
θ (Q)︸ ︷︷ ︸

d/H

, f
(k,i)
θ (K)︸ ︷︷ ︸

d/H

, f
(v,i)
θ (V ))︸ ︷︷ ︸

d/H

)

I Given source encodings h ∈ RT×d and target history y<t, set
Z = E(y<t) ∈ R(t−1)×d and (omitting non-attention details)

Q = AttnHθ (Z,Z,Z) + Z

Z ′ = AttnHθ (Q, h, h) +Q

I Stack for many layers (feeding Z = Z ′ as input), finally define

decθ(h, y<t) := W︸︷︷︸
V×d

z′t−1︸︷︷︸
d×1

where z′t−1 is the last embedding of last layer’s Z ′
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Transformer Encoder-Decoder

I Note N×: Repeated attention (with
multiple heads!)

I Decoder has two types of attention

I Self-attention: Within targets
I Cross-attention: Between targets and

source embeddings

I Efficient parallelizable training

1. Encode source (one-time)
2. Decode over entire target sequence

at once. Every layer/position
computes masked self-attention (and
unmasked cross-attention)

Transformer was the first to rely entirely on self-attention for encoding,

without use of recurrent or convolutional components

I Attention Is All You Need (Vaswani et al., 2017)
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Computational Efficiency (Per-Layer)

Layer Type Complexity # Sequential Ops Max Path Length

Self-Attention O(T 2d) O(1) O(1)
Recurrent O(Td) O(T ) O(T )

Convolutional O(kfTd) O(1) O(logk(T ))
Self-Attentionr O(rTd) O(1) O(T/r)

I Sequence length T , dimension d, filter width k, number of
filters f

I Self-Attentionr: attention limited to r ≤ T tokens

I Computation bottleneck of transformer: quadratic dependence
on length

I Very active research on alleviating the bottleneck
(Reformer, Linformer, Performer, Longformer, inter alia)
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Machine Translation (MT)

I Goal: Translate text from one language to another. One of
the oldest problems in artificial intelligence (e.g.,
Georgetown-IBM experiment, 1954)

I Early ’90s to early 2010: Statistical MT (SMT), huge
engineering pipeline

I Infer word/phrase alignments with latent-variable models
(“IBM models”).

I Run syntactic analyzers (e.g., parser) to extract features
and manipulate text (e.g., phrase re-ordering).

I Use a separately trained language model to enforce
fluency, etc.

I From 2014 onward: Neural MT (NMT)

I Invention of seq2seq and attention for MT: Single model
trained end-to-end

I This really turned the table in NLP, deep learning
became dominant
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Training Data for MT
I Parallel corpus: Pairs (x, y) where x is some text in language
A and y is text of “same meaning” in language B

I Single parallel corpus gives 2 directions in supervision:
A 7→ B and B 7→ A

I Many natural annotations to exploit! Examples
I Europarl (Koehn, 2005): Proceedings of European

Parliament in 21 European languages
I UN Corpus (Ziemski et al., 2016): Public UN documents in

6 languages
I IWSLT17 (Mauro et al., 2017): Translated transcripts of

TED talks and university lectures
I Data not infinite (as in language modeling), but typically

assumes a great deal of supervision
I E.g., WMT14 contains 4.5 million English-German

sentence pairs for training
I Still data can be very limited for languages without many

speakers (low-resource languages)
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Automatic Evaluation of Translation Output

I Likelihood/perplexity of reference text?

I Problem: Same text can have multiple valid translations with
varying qualities

Translation output: It is a guide to action which ensures that the military

always obeys the commands of the party

Reference 1: It is a guide to action that ensures that the military will

forever heed Party commands

Reference 2: It is the guiding principle which guarantees the military

forces always being under the command of the Party

Reference 3: It is the practical guide for the army always to heed the

directions of the party

I One idea: Report the precision of predicted unigram types in
references r

p1 =

∑
r # predicted unigram types present in r

# predicted unigram types
= 0.94

Similarly can compute bigram precision p2 = 0.59
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BLEU

I Report the harmonic mean of n-gram precisions for small
values of n (e.g., n = 1, 2, 3, 4), calibrated by a brevity penalty

BLEU = min

(
1,

∑
i T̂
′
i∑

i T
′
i︸ ︷︷ ︸

< 1 if outputs shorter than refs

)
×

(
4∏

n=1

pn

) 1
4

︸ ︷︷ ︸
avg. n-gram precision

I T̂ ′i : Ouput translation length in example i

I T ′i : Reference translation length in example i, if multiple
references can choose shortest or closest in length wrt. output

I This is a corpus-level statistic: bigger corpus, more reliable

I Flawed but popular and convenient, correlates with human
judgment of translation quality

I BLEU: a Method for Automatic Evaluation of Machine Translation

(Papineni et al., 2002)
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Empirical Performance

I Attention vs no attention: dramatic difference

I Attending over source encodings > 10 higher BLEU
compared to single-vector encoding (Bahdanau et al., 2016)

I Reported results on WMT14 English→German (4.5 million
sentence pairs, 110 million target words for training)

I Winner of WMT14 (SMT): 20.7
I Input-feeding LSTM (ensemble): 23.0
I Convolutional Seq2Seq (ensemble): 26.4
I Transformer: 28.4
I T5∗: 32.1

∗: Trained on external data. T5 (Raffel et al., 2019) is a
transformer encoder-decoder model trained on a large
collection of NLP tasks (including MT) framed as seq2seq
problems
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Direct Optimization of BLEU

I Training: Per-token cross-entropy loss Ĵ(θ)

I Can follow up to directly optimize BLEU score

ĴRL(θ) = −
N∑
i=1

M∑
j=1

pθ(y
(i)
j |x

(i))BLEU(y(i), y
(i)
j )

Drawing M iid samples y
(i)
1 . . . y

(i)
M ∼ pθ(·|x(i))

I Approximation of expected BLEU score by sampling

I Workflow: First fully optimize model by cross entropy. Then
optimize αĴ(θ) + ĴRL(θ) where α is some small value (e.g.,
0.01).

I Can give a slight improvement in BLEU, but found to not
improve translation quality by human judgment (Wu et al., 2016)

I Can use more refined methods, e.g., minimimum risk training
(Shen et al., 2016), and optimize better non-differentiable score,
e.g., SIMILE (Wieting et al., 2019)
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Back-Translation

I Data augmentation method for semi-supervised MT

1. Train an initial translation system on (limited) parallel
corpus.

2. Apply the system on a large quantity of target
monolingual text to create a new parallel corpus
(synthetic source).

3. Train a final translation system on the union of all data.

I Effective, especially for low-resource but even for
high-resource setting

Performance of
different decoding
strategies for
back-translation
(Edunov et al., 2018)
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Multilingual, Zero-Shot, Unsupervised Translation
I Learn a single model to translate between k > 1 languages
I Basic approach: Data preprocessing (Johnson et al., 2017)

(〈bos〉,Hello, 〈2es〉, 〈eos〉) ⇒ (〈bos〉, ¿Hola, 〈eos〉)
I Emergence of zero-shot translation

I Training data: German-English and English-French
I Multilingual model, trained with 〈2en〉, 〈2de〉, 〈2fr〉
I Test time: Give German text with 〈2fr〉!
I Even though no direct German-French supervision, the

model outputs nontrivial translation (but still bad
compared to supervised)

I Can also consider a setting with zero parallel corpus

Various multilingual NMT
setups (Garcia et al., 2020)
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