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Review: Topic Classification with Linear Classifiers

» Classify a document z € X to a topicy € Y

» Many annotated datasets, many related problems like
sentiment analysis

» Text preprocessing, tokenization, vocabulary, Zipf's Law,
bag-of-words (BOW) document representation z € {0,1}"

» Linear classifier 0 = (W = [w; ... wg],b) defines the score of
a document-label pair as scorey(z,y) = wa + by

» Estimation

» Softmax: pg(y|z) x exp(scorey(z,y))
» Training Objective: Minimize cross entropy

H(pop(y|z), pe(y|z))
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Review: Cross-Entropy Loss

0" =argmin  E  [—logpy(y|z)]
9co  (z,y)~pop

all models

Hypothesis class F
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Review: Empirical Cross-Entropy Loss

Don't know pop, but can sample (z1,91) ... (zN,YN) i pop

(trainir:é data)
1 N
In(0) = —Nzlogpe(yz-lxi)
1=1

Important questions
» When is jN minimized for finite N7?
> Are there multiple local minima (i.e., is Jy nonconvex)?

» Can we optimize jN efficiently even if N is really large?
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Minimizing Empirical Cross-Entropy Loss

In(0) := —% Zf\il log pg(yi|z;) > 0 is minimized to 0 by 6* that
assigns pg+ (yi|z;) =1 foralli=1...N.

Karl Stratos CS 533: Natural Language Processing 5/29



Minimizing Empirical Cross-Entropy Loss

In(0) := —% Zi\il log po(yi|xi) > 0 is minimized to 0 by 6* that
assigns pg+ (yi|z;) =1 foralli=1...N.

» The model has memorized training data. Possible if expressive
enough (in functional form & number of parameters)

» Is that a good thing?
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Minimizing Empirical Cross-Entropy Loss

In(0) := —% Zf\il log po(yi|xi) > 0 is minimized to 0 by 6* that
assigns pg+ (yi|z;) =1 foralli=1...N.

» The model has memorized training data. Possible if expressive
enough (in functional form & number of parameters)

» Is that a good thing?
Example: N =2

V = {1 : stock,?2 : game, 3 : monday, 4 : friday}
L = {business, sports}

x1 =(1,0,1,0), y; = business

x9 =(0,1,0,1), yo = sports

Find a linear classifier with zero training loss.
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Optimal Parameters

* *
W = [wbusiness7wsports]

w;usiness = (Oa 0’ 999a O)
w:ports = (Oa 07 07 999)
scorewm(ml,business)::999
scoreyy - (21, sports) =
scoreyy - (xo, business) =
scorewu(xg,sports)—-999
. exp(999)
«(b _
pw+(business|zy) = oxp(999) +1
1
. t = ——F— =0
pw-(sportslen) = S geo T
(business|iz) = o~ 0
+(business|z —_
bw 27 11 exp(999)
exp(999)
t -
pw-(sportslre) = ==~ 600y ~
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Generalization Issues

Training examples:
» (“stock monday”, business)
> (“game tuesday”, sports)

Test example: (“game monday”, sports)

V ={1: stock,?2 : game, 3 : monday, 4 : friday}

x=(0,1,1,0)
wiusiness = (07 07 999a 0)
w:ports = (07 07 07 999)
, exp(999)
* b = — =
pw+(business|x) xp(999) + 1
1
pw+(sports|z) = ————— =~ 0

exp(999) + 1
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Overfitting

Model succeeds in fitting (finite) training data by exploiting
spurious input-label correlations that do not generalize.
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Train-Validation-Test Split of Data

Always prepare a 3-way split of a labeled dataset
» Training set: Use this portion for training a supervised
model. Majority of data (> 90%)

» Validation (or develepment/held-out) set: Use this
portion to check generalization performance of a trained
model. About the same size as the test set

> Test set: After all experimentations and tuning, apply the
trained model to this portion once and report final
performance.

If dataset is missing a validation set, make one from random
samples in the training set.

» If you don't have enough labeled data, consider k-fold
cross-validation: a method for “reusing” held-out data
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k-fold cross-validation

> Partition training data into k roughly equal parts
» Train on all but i-th part, test on ¢-th part

Test data Training data

et {00 000/000000000000000
[aionz |+ 0@ 999000000 000000009
[eaions |+ 0O 9900090 0000/00000

[fomtonk | >0 00009000000 00000000
)

>
< All data >

Use the average performance to assess a training configuration

» For final evaluation, train on all parts
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Regularization Methods

Ways to prevent overfitting.
1. Get more labeled data: best regularization method if possible!

2. Early stopping: stop training when validation performance
fails to improve for a certain number of times (“patience”)

3. Explicit regularization term: for some A > 0 (to be tuned on
dev set)

d
N 2
min In(0) + A g 0; or ;mn In(0) + A g 160;]

1=
——
16113 11611,

4. Other techniques (e.g., dropout, label smoothing)
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Empirical Cross-Entropy Loss for Linear Classifiers

Training data: N iid samples of document-label pairs
(z:,9:;) € RV x {1...L} from human annotators

N L
~ 1
IN(W,b) = NZlog Zexp(wgwi—i-by) —w;xi—byi
i=1 y=1
Training: Unconstrained optimization problem

(W*,b*) = argmin  Jy(W,b)
WeRV*L pcRL

How can we optimize jN efficiently even if N is really large?
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Gradient of a Function

v

Let f : R® — R be any differentiable function.

v

The i-th partial derivative of f is the derivative of f when
viewed as a function of the i-th variable only: %50) € R.

The gradient of f at # € R? is the vector

_(9f(0) af(0)
Vf(@)_<801 89d>eRd

Points to the direction of increase of f at location 6 € R¢
» Magnitude: rate of change
» Vf(0) =04 if 0 is a stationary point
d =1 example f(0) = (6 — 3)2, /() =20—6
» At 6 = 5: Increasing to the right at a rate of 4
» Stationary point § = 3

v

v

v
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Minimizing a Local Approximation

Taylor's theorem: First-order approximation of f : R — R around
0y € R4

fFO)~ f(60) + Vf(60) (60— 06h)
—~—

Current value Change in value as we move away

The approximation is only good for a local neighborhood. Add an
lo distance penalty, for some 7 > 0:

Foon(6) = £(00) + T £(00)T (0 — 00) + 217 16— 6ol

(Also a second-order approximation with V2 f(6) ~ (1/1)Iixa)-
The unique minimizer of fy, , is

0 =0y —nV f(th)
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Gradient Descent

Idea: Start from some 6y € R¢, repeatedly minimize local approx.
fo,.n:(0) around 6; by

Orp1 = 0; — Uyl V f(6:)
N

“step size” or “learning rate”

until V.£(6;) ~ 04

\/ 0 0. 00 00
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Properties of Gradient Descent
Universal: Can minimize any differentiable f : R — R

» Only need the ability to calculate gradient Vf : R¢ — R¢
Local search: Only use local information around current location

> Initialization matters, small random values usually okay (e.g.,
[60); ~ Unif(—a, «) for « = 0.01)

» Convergence at some stationary/critical point 8 (i.e., V.f(6) = 04)
1. Global minimum: f(6) = mingcpa f(6)

2. Local minimum: f(8 +u) < f(6) for all small nonzero u € R¢
3. Saddle point: Not a local minimum

(Global minimum is also local minimum.) Depends on initialization
& function shape. If f is convex, global convergence guaranteed for
appropriate step sizes:
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Quick Gradient Estimation by Sampling

Often f : R® — R averages “component” functions f; : R - R

1 N
= =3 f0) (1)
i=1

Given an equal-sized partition Z; ... Zg of {1... N}
(mini-batches) where |Z;| < N (batch size)

IIk\ > Vi) ke~ Unif({1...K})

€Ly

This allows us to estimate V f(6) quickly by averaging V f;(0) in a
single mini-batch, without considering all N components.

» Consistent estimation (take expectation over k). This
assumes the form (1). Not consistent for general f!
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Intuition

f3(0)

f2(0)
f1(0)
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Intuition

0
> Objective: ming (1/N) SN, fi(6)
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Intuition

0
> Objective: ming (1/N) SN, fi(6)

» Stochastic gradient approximation (batch size 1):

1
V1) ~ V5i(0)
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Intuition

0
> Objective: ming (1/N) SN, fi(6)

» Stochastic gradient approximation (batch size 1):

1
V1) ~ V5i(0)

» Could be a noisy estimate
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Stochastic Gradient Descent (SGD)

v

Input: N examples (z;,y;) defining per-example losses
Ji :RES R

Objective: Average loss Jy(6) = (1/N) Zf\il Ji(0)
Hyperparameters: Number of “epochs” FE, batch size B,
learning rate n

Algorithm: Initialize # € R? and for E epochs,

1. Shuffle (1...N) and partition into B-sized batches Z; ... Zx
(K ~ N/B).
2. For k=1... K, take a gradient step

eee—nGZvi(a))

i€Ly,

v

v

v

v

Memory footprint: O(d) to store § and gradients
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Gradient for Linear Classifiers

Recall: training data (z;,;) € RY x {1...L}, loss
R L& L
IN(W,b) = N Zlog Zexp(wyTxi +by) | — w;:c,- — by,
= —1

Can show Jy is convex, so SGD will converge to a global
minimum. Exercise: derive the gradients

N
~ 1
Vau, IN(W,b) = N Z; pwap(ylz) = [ly = yil] | 2
= 1 if true, O else
Vi, v (W, b) Zpr (ylas) — [y = vil]

Intuitive: adjust the difference between model prediction and
ground truth
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Rule 1: Always Monitor Training Loss

Jn () should (almost certainly) strictly decrease each epoch: this
is what we are optimizing!

» Easy to track: accumulate losses over batches and divide by N

07

06

05

04

03

02

Karl Stratos

—— average training loss

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 1 17 18 19 20
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Rule 2: Always Monitor Validation Performance
Check validation performance (at least) every epoch and do early
stopping to prevent overfitting.
» Performance for topic classification is simple accuracy (#
correct / # test examples), but it can be more complicated
for other tasks (structured prediction?)

—— training accuracy
—— walidation accuracy

92

1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15 16 17 18 19 20
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Rule 3: Look at Errors
Once performance seems okay by quantitative metrics, do some
qualitative analysis of errors to get an actual understanding of
challenges in the task and how to improve
» Confusion matrix works for simple classification, but may need
to be creative to analyze complex problems (translation?)

Sports World

Business

Sciffech

Werld Sports Business Sciffech
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Linearly separable

Limitations of a Linear Classifier
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1. Feature engineering: Specify better input representation

2. Feature learning: Representation = part of model to learn
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Feature Engineering

> You can always add new dimensions until data is separable

Low-dimensional space Space of increased dimension
after transformation

» Much of past NLP research spent in feature engineering. For

instance, for topic classification consider
» Higher-order features: bag-of-n-grams z € {0, 1}Vn?
» Side information (e.g., author identity? date? length?)

» Pros: Requires a deep understanding of the specific problem,
interpretable weights, can work well even with small data by
specifying right features

» Con: Have to do this for every new problem, no way to know

how much engineering is enough
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Aside: Kernel Trick

Technique to implicitly enrich input representation, applicable
whenever model/learning involves only dot product between inputs
(e.g., SVMs)

[¢] o Decision surface
o

%0 o

No need to manually engineer good features, but has other cons
(not easily scalable to large data, still have to choose the kernel)

» Largely out of the scope of this course

» Active research on connections between kernel machines and
deep learning
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Feature Learning

> This is “deep learning”.

» Parameterizes an encoder ency : X — R, which computes
the input representation

» Only score changes: score of (z,y) € X x {1...L} now
scorey(x,y) 1= wJenc@(:c) + by

f now includes all parameters associated with the encoder, as
well as the linear classifier parameters (W = [wy ... wr],b)

» Conditional label distribution defined the same way

exp(scorey(z,
poylz) = =¢ plscorey (7, y)) Vy=1...L

> =1 exp(scoreg(z,y'))
» Same training scheme: gradient descent on the cross-entropy
loss

Karl Stratos CS 533: Natural Language Processing 27/29



Example: One Hidden Layer Feedforward Network

» Parameters: § ¢ R100V+20200+201L yeferring to

» Embedding matrix: E = [e;...ey] € RIOXV ¢, ¢ R190 js 3
dense, 100-dimensional vector representation of word ¢ € V

» Hidden layer: U € R190%200 3pd ¢ ¢ R200

» Linear layer: W = [w; ...w] € R?°*L and b € RY

» Encoder: given an initial BOW representation z € {0,1}" of
a document, let avgp(z) := (1/[z]) >_;.,.—; € and compute

ency(z) =max{ 0, U' avgp(z)+ a € R29

200x100 100x1 200x1

where max {0, v} is elementwise.
» scorey(x,y) = wJence(sc) + by

> po(ylz) o< exp(scorey(z,y))
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Training

Use SGD to optimize

score,
- _72 exp o0(zi,9i))
HcRd y 1 eXp(SCOl’ee (:Ela y))

Recall: 6 denotes parameters of the encoder as well as (W, b)

Important questions
» How should we define the encoder? Does it matter?
» How can we calculate gradients?

» How can we make training efficient with so many parameters?
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