
CS 533: Natural Language Processing

Optimization, Introduction to
Deep Learning

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/29

Review: Topic Classification with Linear Classifiers

I Classify a document x ∈ X to a topic y ∈ Y
I Many annotated datasets, many related problems like

sentiment analysis

I Text preprocessing, tokenization, vocabulary, Zipf’s Law,
bag-of-words (BOW) document representation x ∈ {0, 1}V

I Linear classifier θ = (W = [w1 . . . wL], b) defines the score of
a document-label pair as scoreθ(x, y) = w>y x+ by

I Estimation
I Softmax: pθ(y|x) ∝ exp(scoreθ(x, y))
I Training Objective: Minimize cross entropy
H(pop(y|x), pθ(y|x))

Karl Stratos CS 533: Natural Language Processing 2/29

Review: Cross-Entropy Loss

θ∗ = argmin
θ∈Θ

E
(x,y)∼pop

[− log pθ(y|x)]

all models

pop(y|x)

Hypothesis class F

pθ∗(y|x)

ap
pr
ox
.

Karl Stratos CS 533: Natural Language Processing 3/29

Review: Empirical Cross-Entropy Loss

Don’t know pop, but can sample (x1, y1) . . . (xN , yN)
iid∼ pop︸ ︷︷ ︸

(training data)

ĴN(θ) := −
1

N

N∑
i=1

log pθ(yi|xi)

Important questions

I When is ĴN minimized for finite N?

I Are there multiple local minima (i.e., is ĴN nonconvex)?

I Can we optimize ĴN efficiently even if N is really large?

Karl Stratos CS 533: Natural Language Processing 4/29

Minimizing Empirical Cross-Entropy Loss

ĴN (θ) := − 1
N

∑N
i=1 log pθ(yi|xi) ≥ 0 is minimized to 0 by θ∗ that

assigns pθ∗(yi|xi) = 1 for all i = 1 . . . N .

I The model has memorized training data. Possible if expressive
enough (in functional form & number of parameters)

I Is that a good thing?

Example: N = 2

V = {1 : stock, 2 : game, 3 : monday, 4 : friday}
L = {business, sports}
x1 = (1, 0, 1, 0), y1 = business

x2 = (0, 1, 0, 1), y2 = sports

Find a linear classifier with zero training loss.

Karl Stratos CS 533: Natural Language Processing 5/29

Minimizing Empirical Cross-Entropy Loss

ĴN (θ) := − 1
N

∑N
i=1 log pθ(yi|xi) ≥ 0 is minimized to 0 by θ∗ that

assigns pθ∗(yi|xi) = 1 for all i = 1 . . . N .

I The model has memorized training data. Possible if expressive
enough (in functional form & number of parameters)

I Is that a good thing?

Example: N = 2

V = {1 : stock, 2 : game, 3 : monday, 4 : friday}
L = {business, sports}
x1 = (1, 0, 1, 0), y1 = business

x2 = (0, 1, 0, 1), y2 = sports

Find a linear classifier with zero training loss.

Karl Stratos CS 533: Natural Language Processing 5/29

Minimizing Empirical Cross-Entropy Loss

ĴN (θ) := − 1
N

∑N
i=1 log pθ(yi|xi) ≥ 0 is minimized to 0 by θ∗ that

assigns pθ∗(yi|xi) = 1 for all i = 1 . . . N .

I The model has memorized training data. Possible if expressive
enough (in functional form & number of parameters)

I Is that a good thing?

Example: N = 2

V = {1 : stock, 2 : game, 3 : monday, 4 : friday}
L = {business, sports}
x1 = (1, 0, 1, 0), y1 = business

x2 = (0, 1, 0, 1), y2 = sports

Find a linear classifier with zero training loss.

Karl Stratos CS 533: Natural Language Processing 5/29

Optimal Parameters
W ∗ = [w∗business, w

∗
sports]

w∗business = (0, 0, 999, 0)

w∗sports = (0, 0, 0, 999)

scoreW∗(x1, business) = 999

scoreW∗(x1, sports) = 0

scoreW∗(x2, business) = 0

scoreW∗(x2, sports) = 999

pW∗(business|x1) =
exp(999)

exp(999) + 1
≈ 1

pW∗(sports|x1) =
1

exp(999) + 1
≈ 0

pW∗(business|x2) =
1

1 + exp(999)
≈ 0

pW∗(sports|x2) =
exp(999)

1 + exp(999)
≈ 1

Karl Stratos CS 533: Natural Language Processing 6/29

Generalization Issues

Training examples:

I (“stock monday”, business)

I (“game tuesday”, sports)

Test example: (“game monday”, sports)

V = {1 : stock, 2 : game, 3 : monday, 4 : friday}
x = (0, 1, 1, 0)

w∗business = (0, 0, 999, 0)

w∗sports = (0, 0, 0, 999)

pW ∗(business|x) =
exp(999)

exp(999) + 1
≈ 1

pW ∗(sports|x) =
1

exp(999) + 1
≈ 0

Karl Stratos CS 533: Natural Language Processing 7/29

Overfitting

Model succeeds in fitting (finite) training data by exploiting
spurious input-label correlations that do not generalize.

Karl Stratos CS 533: Natural Language Processing 8/29

Train-Validation-Test Split of Data

Always prepare a 3-way split of a labeled dataset

I Training set: Use this portion for training a supervised
model. Majority of data (> 90%)

I Validation (or develepment/held-out) set: Use this
portion to check generalization performance of a trained
model. About the same size as the test set

I Test set: After all experimentations and tuning, apply the
trained model to this portion once and report final
performance.

If dataset is missing a validation set, make one from random
samples in the training set.

I If you don’t have enough labeled data, consider k-fold
cross-validation: a method for “reusing” held-out data

Karl Stratos CS 533: Natural Language Processing 9/29

k-fold cross-validation

I Partition training data into k roughly equal parts

I Train on all but i-th part, test on i-th part

Use the average performance to assess a training configuration

I For final evaluation, train on all parts

Karl Stratos CS 533: Natural Language Processing 10/29

Regularization Methods

Ways to prevent overfitting.

1. Get more labeled data: best regularization method if possible!

2. Early stopping: stop training when validation performance
fails to improve for a certain number of times (“patience”)

3. Explicit regularization term: for some λ > 0 (to be tuned on
dev set)

min
θ∈Rd

ĴN (θ) + λ

d∑
i=1

θ2i︸ ︷︷ ︸
||θ||22

or min
θ∈Rd

ĴN (θ) + λ

d∑
i=1

|θi|︸ ︷︷ ︸
||θ||1

4. Other techniques (e.g., dropout, label smoothing)

Karl Stratos CS 533: Natural Language Processing 11/29

Empirical Cross-Entropy Loss for Linear Classifiers

Training data: N iid samples of document-label pairs
(xi, yi) ∈ RV × {1 . . . L} from human annotators

ĴN (W, b) =
1

N

N∑
i=1

log

 L∑
y=1

exp(w>y xi + by)

− w>yixi − byi
Training: Unconstrained optimization problem

(W ∗, b∗) = argmin
W∈RV×L, b∈RL

ĴN(W, b)

How can we optimize ĴN efficiently even if N is really large?

Karl Stratos CS 533: Natural Language Processing 12/29

Gradient of a Function

I Let f : Rd → R be any differentiable function.

I The i-th partial derivative of f is the derivative of f when
viewed as a function of the i-th variable only: ∂f(θ)

∂θi
∈ R.

I The gradient of f at θ ∈ Rd is the vector

∇f(θ) =

(
∂f(θ)

∂θ1
, . . . ,

∂f(θ)

∂θd

)
∈ Rd

I Points to the direction of increase of f at location θ ∈ Rd
I Magnitude: rate of change
I ∇f(θ) = 0d if θ is a stationary point

I d = 1 example f(θ) = (θ − 3)2, f ′(θ) = 2θ − 6
I At θ = 5: Increasing to the right at a rate of 4
I Stationary point θ = 3

Karl Stratos CS 533: Natural Language Processing 13/29

Minimizing a Local Approximation

Taylor’s theorem: First-order approximation of f : Rd → R around
θ0 ∈ Rd

f(θ) ≈ f(θ0)︸ ︷︷ ︸
Current value

+ ∇f(θ0)
>(θ − θ0)︸ ︷︷ ︸

Change in value as we move away

The approximation is only good for a local neighborhood. Add an
l2 distance penalty, for some η > 0:

fθ0,η(θ) := f(θ0) +∇f(θ0)
>(θ − θ0) +

1

2η
||θ − θ0||2

(Also a second-order approximation with ∇2f(θ) ≈ (1/η)Id×d).
The unique minimizer of fθ0,η is

θ = θ0 − η∇f (θ0)

Karl Stratos CS 533: Natural Language Processing 14/29

Gradient Descent
Idea: Start from some θ0 ∈ Rd, repeatedly minimize local approx.
fθt,ηt(θ) around θt by

θt+1 = θt − ηt︸︷︷︸
“step size” or “learning rate”

∇f(θt)

until ∇f(θt) ≈ 0d

𝜃₀𝜃₁𝜃₂𝜃₃

Karl Stratos CS 533: Natural Language Processing 15/29

Properties of Gradient Descent
Universal: Can minimize any differentiable f : Rd → R

I Only need the ability to calculate gradient ∇f : Rd → Rd

Local search: Only use local information around current location

I Initialization matters, small random values usually okay (e.g.,
[θ0]i ∼ Unif(−α, α) for α = 0.01)

I Convergence at some stationary/critical point θ̄ (i.e., ∇f(θ̄) = 0d)

1. Global minimum: f(θ̄) = minθ∈Rd f(θ)
2. Local minimum: f(θ̄ + u) ≤ f(θ̄) for all small nonzero u ∈ Rd
3. Saddle point: Not a local minimum

(Global minimum is also local minimum.) Depends on initialization
& function shape. If f is convex, global convergence guaranteed for
appropriate step sizes:

Karl Stratos CS 533: Natural Language Processing 16/29

Quick Gradient Estimation by Sampling

Often f : Rd → R averages “component” functions fi : Rd → R

f(θ) =
1

N

N∑
i=1

fi(θ) (1)

Given an equal-sized partition I1 . . . IK of {1 . . . N}
(mini-batches) where |Ik| � N (batch size)

∇f(θ) ≈ 1

|Ik|
∑
i∈Ik

∇fi(θ) k ∼ Unif({1 . . .K})

This allows us to estimate ∇f(θ) quickly by averaging ∇fi(θ) in a
single mini-batch, without considering all N components.

I Consistent estimation (take expectation over k). This
assumes the form (1). Not consistent for general f !

Karl Stratos CS 533: Natural Language Processing 17/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate

Karl Stratos CS 533: Natural Language Processing 18/29

Intuition

θ

f1(θ)
f2(θ)

f3(θ)

∑
i fi(θ)

I Objective: minθ (1/N)
∑N

i=1 fi(θ)

I Stochastic gradient approximation (batch size 1):

1

N
∇f(θ) ≈ ∇fi(θ)

I Could be a noisy estimate
Karl Stratos CS 533: Natural Language Processing 18/29

Stochastic Gradient Descent (SGD)

I Input: N examples (xi, yi) defining per-example losses
Ĵi : Rd → R

I Objective: Average loss ĴN (θ) = (1/N)
∑N

i=1 Ĵi(θ)

I Hyperparameters: Number of “epochs” E, batch size B,
learning rate η

I Algorithm: Initialize θ ∈ Rd and for E epochs,

1. Shuffle (1 . . . N) and partition into B-sized batches I1 . . . IK
(K ≈ N/B).

2. For k = 1 . . .K, take a gradient step

θ ← θ − η

(
1

B

∑
i∈Ik

∇Ĵi(θ)

)

I Memory footprint: O(d) to store θ and gradients

Karl Stratos CS 533: Natural Language Processing 19/29

Gradient for Linear Classifiers

Recall: training data (xi, yi) ∈ RV × {1 . . . L}, loss

ĴN (W, b) =
1

N

N∑
i=1

log

 L∑
y=1

exp(w>y xi + by)

− w>yixi − byi
Can show ĴN is convex, so SGD will converge to a global
minimum. Exercise: derive the gradients

∇wy ĴN (W, b) =
1

N

N∑
i=1

pW,b(y|xi)− [[y = yi]]︸ ︷︷ ︸
1 if true, 0 else

xi

∇by ĴN (W, b) =
1

N

N∑
i=1

pW,b(y|xi)− [[y = yi]]

Intuitive: adjust the difference between model prediction and
ground truth
Karl Stratos CS 533: Natural Language Processing 20/29

Rule 1: Always Monitor Training Loss

ĴN (θ) should (almost certainly) strictly decrease each epoch: this
is what we are optimizing!

I Easy to track: accumulate losses over batches and divide by N

Karl Stratos CS 533: Natural Language Processing 21/29

Rule 2: Always Monitor Validation Performance
Check validation performance (at least) every epoch and do early
stopping to prevent overfitting.

I Performance for topic classification is simple accuracy (#
correct / # test examples), but it can be more complicated
for other tasks (structured prediction?)

Karl Stratos CS 533: Natural Language Processing 22/29

Rule 3: Look at Errors
Once performance seems okay by quantitative metrics, do some
qualitative analysis of errors to get an actual understanding of
challenges in the task and how to improve

I Confusion matrix works for simple classification, but may need
to be creative to analyze complex problems (translation?)

Karl Stratos CS 533: Natural Language Processing 23/29

Limitations of a Linear Classifier

Linearly separable Not linearly separable (e.g., XOR)

Accuracy 100% 3 Accuracy ≤ 50% 7

Solutions

1. Feature engineering: Specify better input representation

2. Feature learning: Representation = part of model to learn

Karl Stratos CS 533: Natural Language Processing 24/29

Feature Engineering

I You can always add new dimensions until data is separable

I Much of past NLP research spent in feature engineering. For
instance, for topic classification consider

I Higher-order features: bag-of-n-grams x ∈ {0, 1}V
n

?
I Side information (e.g., author identity? date? length?)

I Pros: Requires a deep understanding of the specific problem,
interpretable weights, can work well even with small data by
specifying right features

I Con: Have to do this for every new problem, no way to know
how much engineering is enough

Karl Stratos CS 533: Natural Language Processing 25/29

Aside: Kernel Trick

Technique to implicitly enrich input representation, applicable
whenever model/learning involves only dot product between inputs
(e.g., SVMs)

No need to manually engineer good features, but has other cons
(not easily scalable to large data, still have to choose the kernel)

I Largely out of the scope of this course

I Active research on connections between kernel machines and
deep learning

Karl Stratos CS 533: Natural Language Processing 26/29

Feature Learning

I This is “deep learning”.

I Parameterizes an encoder encθ : X → RH , which computes
the input representation

I Only score changes: score of (x, y) ∈ X × {1 . . . L} now

scoreθ(x, y) := w>y encθ(x) + by

θ now includes all parameters associated with the encoder, as
well as the linear classifier parameters (W = [w1 . . . wL], b)

I Conditional label distribution defined the same way

pθ(y|x) =
exp(scoreθ(x, y))∑L

y′=1 exp(scoreθ(x, y′))
∀y = 1 . . . L

I Same training scheme: gradient descent on the cross-entropy
loss

Karl Stratos CS 533: Natural Language Processing 27/29

Example: One Hidden Layer Feedforward Network

I Parameters: θ ∈ R100V+20200+201L referring to
I Embedding matrix: E = [e1 . . . eV] ∈ R100×V , ei ∈ R100 is a

dense, 100-dimensional vector representation of word i ∈ V
I Hidden layer: U ∈ R100×200 and a ∈ R200

I Linear layer: W = [w1 . . . wL] ∈ R200×L and b ∈ RL

I Encoder: given an initial BOW representation x ∈ {0, 1}V of
a document, let avgE(x) := (1/ |x|)

∑
i:xi=1 ei and compute

encθ(x) = max

0, U>︸︷︷︸
200×100

avgE(x)︸ ︷︷ ︸
100×1

+ a︸︷︷︸
200×1

 ∈ R200

where max {0, v} is elementwise.

I scoreθ(x, y) = w>y encθ(x) + by

I pθ(y|x) ∝ exp(scoreθ(x, y))

Karl Stratos CS 533: Natural Language Processing 28/29

Training

Use SGD to optimize

min
θ∈Rd

− 1

N

N∑
i=1

log
exp(scoreθ(xi, yi))∑L
y=1 exp(scoreθ(xi, y))

Recall: θ denotes parameters of the encoder as well as (W, b)

Important questions

I How should we define the encoder? Does it matter?

I How can we calculate gradients?

I How can we make training efficient with so many parameters?

Karl Stratos CS 533: Natural Language Processing 29/29

