
CS 533: Natural Language Processing

Linear Classification

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/30

Review: NLP as a Classification Problem
text 7→ expected human response

Input Output
failed to not disappoint -1 (sentiment)

the dog saw the cat D N V D N (POS tagging)

* the dog saw the cat

PRED

SBJDET
OBJ

DET
(parsing)

산을 갔다 I went to the mountain (translation)
SONOMA, Calif. — Wine country was

shrouded in a thick layer of smoky
haze here on Tuesday as firefighters

continued to battle wildfires
that have left at least 13

people dead and have damaged or
destroyed more than 1,500 structures.

Wildfires sweep across
northern California;

13 dead
(summarization)

Who was the richest
man in 2020?

Jeff Bezos (QA)

Trump spent years pushing the
untrue “birther” claim that

the nation’s first black president
was not born in the U.S.

Trump spent years pushing the
untrue “birther” claim that

the nation’s first black president
was not born in the U.S.

(linking)

Open the pod bay doors, HAL. I’m sorry, Dave.
I’m afraid I can’t do that.

(dialogue)

Karl Stratos CS 533: Natural Language Processing 2/30

Review: Classification as Optimization

I Training: Find model parameters that minimize some loss on
training data D

θ∗ = argmin
θ∈Θ

lossD(θ)

I Inference: Given input x, find valid output with maximum
score under trained parameters θ̂

y∗ = argmax
y∈Y(x)

scoreθ̂(x, y)

Karl Stratos CS 533: Natural Language Processing 3/30

Review: Supervised ML Pipeline

I Problem definition: Define a supervised learning problem.

I Data collection: Start with training data for which we know
the correct outcome.

I Representation: Choose how to represent the data.

I Modeling: Choose a hypothesis class – a set of possible
explanations for the connection between input (e.g., image)
and output (e.g., class label).

I Estimation: Find best hypothesis you can in the chosen class.
This is what people usually think of as “learning”.

I Model selection: If we have different hypothesis classes, we
can select one based on some criterion.

Karl Stratos CS 533: Natural Language Processing 4/30

Topic Classification with Linear Classifiers

I Problem definition

I Data collection

I Representation

I Modeling
I Estimation

I Softmax
I Training Objective

Karl Stratos CS 533: Natural Language Processing 5/30

Problem and Data

I Problem. Classify a document x ∈ X to a topic y ∈ Y

I Data. Many annotated datasets
I AG News: News articles, one of 4 types (World, Sports,

Business, or Sci/Tech)
I DBpedia: Wikipedia articles, one of 14 types (Company,

Artist, Film, Animal, etc.)
I Yahoo! Answers: Online questions/answers, one of 10 types

(Health, Sports, Science & Mathematics, etc.)

I Related: sentiment classification
I IMDB: Movie reviews, one of 2 “types” (positive or negative)
I Yelp: Restarant reviews, one of 5 “types” (number of stars)
I Amazon: Product reviews, one of 5 “types” (number of stars)

Karl Stratos CS 533: Natural Language Processing 6/30

Topic Classification with Linear Classifiers

I Problem definition

I Data collection

I Representation

I Modeling
I Estimation

I Softmax
I Training Objective

Karl Stratos CS 533: Natural Language Processing 7/30

Text Preprocessing

I Text data can be extremely noisy.
I Non-language strings: HTML code, URLs
I Noise in language: typos, ungrammatical sentences, numerical

values (“87.175”)

I A lot of data cleaning/preprocessing efforts may be necessary.

(Raffel et al. (2020) on cleaning Common Crawl)

I We will assume text is already reasonable clean.

Karl Stratos CS 533: Natural Language Processing 8/30

Tokenization
“the dog didn’t see the cat.”

I Whitespace? [the, dog, didn′t, see, the, cat.] (length 6)

I Can’t handle non-whitespace splits (“cat.”)

I Rule-based? [the, dog, did, n′t, see, the, cat, .] (length 8)

I Language specific, needs experts to develop manual rules

I Bytes??? [\xec, \x95, . . . , \xeb, \x85, \x95]

I UTF-8: can encode all > 1 million valid character code points
in Unicode using ≤ 4 one-byte (8-bit) code units.

I Language agnostic, but completely unreadable. Also the space
of possible token types is too big (232).

Modern NLP: automatically induce tokenization rules

I Given a budget (e.g., at most 10,000 token types), optimizing some
unsupervised objective on large quantities of text

I WordPiece (Wu et al., 2016), byte-pair encoding (BPE) (Sennrich et al., 2016)

Karl Stratos CS 533: Natural Language Processing 9/30

Index Mapping

Once text is cleaned and tokenized

I Every piece of text = sequence of integers

[the, dog, saw, the, cat] → [7, 10, 3870, 7, 13]

I Vocabulary V = {1 . . . V }: Set of possible token types

I Label set Y = {1 . . . L}: Set of possible label types
I More jargons in NLP:

I Corpus: Unlabeled text dataset
I n-gram: Sequence of n word types. For n = 1, 2, 3, called

unigram, bigram, trigram

At this point we work with integers only. There is no string.

Karl Stratos CS 533: Natural Language Processing 10/30

Aside: Zipf’s Law
Let w1 . . . wV ∈ V be unigrams sorted in decreasing probability.
Empircally the following seems to hold for all 1 ≤ i < V :

Probability of seeing wi in text

≈ 2× Probability of seeing wi+1 in text

First four words: 93% of the unigram probability mass?

the

,

.

to

of
in

and
a

Karl Stratos CS 533: Natural Language Processing 11/30

Zipf’s Law in Practice

th
e , . to of in

an
d a `` 's on ''

th
at fo
r

sa
id he

wi
th is

wa
s

hi
s it at as ha
s i

by be bu
t

wi
ll

ha
ve

fro
m an we no
t) (

af
te

r
wh

o
th

is
ha

d
ar

e
pr

es
id

en
t

tw
o

wo
ul

d
be

en
th

ey al
so fir
st

th
ei

r
wh

ich
wo

rld --
la

st
we

re
ov

er
ne

w its n'
t

on
e

ou
t

m
or

e
wh

en
ob

am
a

ag
ai

ns
t

ab
ou

t
up sh

e
ye

ar he
r

m
in

ist
er al

l
us hi
m

ch
in

a :
th

er
e

un
ite

d
tim

e
te

am
go

ve
rn

m
en

t if
u.

s. do no
be

fo
re or

in
to yo
u

ye
ar

s
se

co
nd

th
an

be
tw

ee
n

co
ul

d
pe

op
le

to
ld

ca
n

sin
ce

st
at

e
tu

es
da

y
wi

n

0

10000

20000

30000

40000

50000

60000
Frequency
Zipf

Karl Stratos CS 533: Natural Language Processing 12/30

Document Representation

I Represent a document as a vector to classify.

I Bag-of-words (BOW) representation: x ∈ {0, 1}V indicating
the presence of word types

document = [4, 2, 2, 1, 2] → x =

0
1
1
0
1
0
0
0

∈ {0, 1}V

I What information are we losing in this representation?

I Benefits: Simple, memory-efficient (sparse), good for
modeling topics (presence of “keywords”)

Karl Stratos CS 533: Natural Language Processing 13/30

Topic Classification with Linear Classifiers

I Problem definition

I Data collection

I Representation

I Modeling
I Estimation

I Softmax
I Training Objective

Karl Stratos CS 533: Natural Language Processing 14/30

Hypothesis Space of Linear Classifiers

I Possible models: all mappings from RV to {1 . . . L}
I Linear classifiers: all (W, b) ∈ RV×L × RL defining

x 7→ L
arg max

y=1
[W>︸︷︷︸
L×V

x︸︷︷︸
V×1

+ b︸︷︷︸
L×1︸ ︷︷ ︸

L×1

]y

I Can be seen as defining input-label scores

scoreW,b(x, y) := w>y x+ by =: hy

where wy ∈ RV is the y-th column of W = [w1 . . . wL]

I h ∈ RL called scores or logits (for x)

Karl Stratos CS 533: Natural Language Processing 15/30

Hypothesis Space of Linear Classifiers

I Possible models: all mappings from RV to {1 . . . L}
I Linear classifiers: all (W, b) ∈ RV×L × RL defining

x 7→ L
arg max

y=1
[W>︸︷︷︸
L×V

x︸︷︷︸
V×1

+ b︸︷︷︸
L×1︸ ︷︷ ︸

L×1

]y

I Can be seen as defining input-label scores

scoreW,b(x, y) := w>y x+ by =: hy

where wy ∈ RV is the y-th column of W = [w1 . . . wL]

I h ∈ RL called scores or logits (for x)

Karl Stratos CS 533: Natural Language Processing 15/30

Clarification on Terminology

I The parameters of a function class is the set of variables that
defines the behavior of a function in the class

I Example: F := {ax+ b cos(x) + c : a, b, c ∈ R}
I The parameter space associated with F is R3

I f(x) = 5x+ 2 cos(x)− 5 has parameter values (5, 2,−5)

I We will generally write
I Θ: parameter space
I θ ∈ Θ: specific parameter value

I For linear topic classifiers:
I Θ = RV×L × RL

I θ = (W, b)
I Without loss of generality, we view θ ∈ R(V+1)L as a vector

Karl Stratos CS 533: Natural Language Processing 16/30

Linear Classifier with BOW Representation

scoreW,b(x, y) =
V∑

i=1: xi=1

[wy]i + by

“Interpretable”: For x = BOW(“market up market up up”),

scoreW,b(x,business) = [wbusiness]“market” + [wbusiness]“up” + bbusiness

� [wsports]“market” + [wsports]“up” + bsports

= scoreW,b(x, sports)

Karl Stratos CS 533: Natural Language Processing 17/30

Geometry of Projections

Each label y ∈ {1 . . . L} defines a hyperplane (not a subspace)

S(y) :=
{
z ∈ RV : w>y z + by = 0

}
Claim. For document x ∈ RV , shortest distance from S(y) to x is

w>y x+ by

||wy||
The distance is signed. Negative if x lies on the “left” side.

Karl Stratos CS 533: Natural Language Processing 18/30

Geometry of Projections: Continued

“Max distance rule”: Pick label that puts x furthest (right side)

x 7→ L
argmax

y=1

w>y x+ by

||wy||

Linear classifier:

x 7→ L
argmax

y=1
w>y x+ by

Equivalent if weight vectors have the same norm, else different

I Only direction of wy matters in max distance rule (if you
ignore the bias term)

I ||wy|| can affect the decision of linear classifiers (even if you
ignore the bias term)

Karl Stratos CS 533: Natural Language Processing 19/30

Redundancy of Parameters

Suppose ∃wy ∈ RV such that w>y x > 0. Then

scoreW,b(x, y) = w>y x︸︷︷︸
>0

+by

can be sent to ∞ without changing the direction of wy by

I Scale by →∞, or

I Scale ||wy|| → ∞
So technically the bias term is unnecessary in this scenario (still
necessary for encoding prior beliefs about labels).

I Typically harmless to have some redundancy in model
parameters

Karl Stratos CS 533: Natural Language Processing 20/30

Justification of the Claim

1. Let S0(y) =
{
z ∈ RV : w>y z = 0

}
. This is a (V − 1)-dimensional

subspace orthogonal to wy ∈ RV .

2. The shortest distance from S0(y) to x is w>y x/ ||w||.

3. Note that S(y) shifts every point in S0(y) by −by/[wy]i along each
axis i = 1 . . . V :

zi = (−
∑

j 6=i[wy]jzj)/[wy]i z ∈ S0(y)

zi = (−
∑

j 6=i[wy]jzj)/[wy]i−by/[wy]i z ∈ S(y)

Thus the shortest distance from S0(y) to S(y) is −by/ ||w||.

4. From 2 and 3, it follows that the shortest distance from S(y) to x is
(w>y x+ by)/ ||w||.

See the provided Jupyter notebook for further illustration.

Karl Stratos CS 533: Natural Language Processing 21/30

Justification of the Claim

1. Let S0(y) =
{
z ∈ RV : w>y z = 0

}
. This is a (V − 1)-dimensional

subspace orthogonal to wy ∈ RV .

2. The shortest distance from S0(y) to x is w>y x/ ||w||.

3. Note that S(y) shifts every point in S0(y) by −by/[wy]i along each
axis i = 1 . . . V :

zi = (−
∑

j 6=i[wy]jzj)/[wy]i z ∈ S0(y)

zi = (−
∑

j 6=i[wy]jzj)/[wy]i−by/[wy]i z ∈ S(y)

Thus the shortest distance from S0(y) to S(y) is −by/ ||w||.

4. From 2 and 3, it follows that the shortest distance from S(y) to x is
(w>y x+ by)/ ||w||.

See the provided Jupyter notebook for further illustration.

Karl Stratos CS 533: Natural Language Processing 21/30

Justification of the Claim

1. Let S0(y) =
{
z ∈ RV : w>y z = 0

}
. This is a (V − 1)-dimensional

subspace orthogonal to wy ∈ RV .

2. The shortest distance from S0(y) to x is w>y x/ ||w||.

3. Note that S(y) shifts every point in S0(y) by −by/[wy]i along each
axis i = 1 . . . V :

zi = (−
∑

j 6=i[wy]jzj)/[wy]i z ∈ S0(y)

zi = (−
∑

j 6=i[wy]jzj)/[wy]i−by/[wy]i z ∈ S(y)

Thus the shortest distance from S0(y) to S(y) is −by/ ||w||.

4. From 2 and 3, it follows that the shortest distance from S(y) to x is
(w>y x+ by)/ ||w||.

See the provided Jupyter notebook for further illustration.

Karl Stratos CS 533: Natural Language Processing 21/30

Justification of the Claim

1. Let S0(y) =
{
z ∈ RV : w>y z = 0

}
. This is a (V − 1)-dimensional

subspace orthogonal to wy ∈ RV .

2. The shortest distance from S0(y) to x is w>y x/ ||w||.

3. Note that S(y) shifts every point in S0(y) by −by/[wy]i along each
axis i = 1 . . . V :

zi = (−
∑

j 6=i[wy]jzj)/[wy]i z ∈ S0(y)

zi = (−
∑

j 6=i[wy]jzj)/[wy]i−by/[wy]i z ∈ S(y)

Thus the shortest distance from S0(y) to S(y) is −by/ ||w||.

4. From 2 and 3, it follows that the shortest distance from S(y) to x is
(w>y x+ by)/ ||w||.

See the provided Jupyter notebook for further illustration.

Karl Stratos CS 533: Natural Language Processing 21/30

Topic Classification with Linear Classifiers

I Problem definition

I Data collection

I Representation

I Modeling
I Estimation

I Softmax
I Training Objective

Karl Stratos CS 533: Natural Language Processing 22/30

The Softmax Function

I Given any h ∈ RL, we define softmax(h) ∈ [0, 1]L as

softmaxi(h) :=
exp(hi)∑L
j=1 exp(hj)

∀i = 1 . . . L

I Check nonnegativity and normalization

I Check shift-invariance: for any c ∈ R (elementwise addition)

softmax(h+ c) = softmax(h)

I Transforms any length-L real-valued vector into a
distribution over {1 . . . L}

softmax([−0.23, 1.51,−2.11]) = [0.15, 0.83, 0.02]

softmax([−∞,−∞, 1.00, 2.00]) = [0.00, 0.00, 0.27, 0.73]

Karl Stratos CS 533: Natural Language Processing 23/30

The Softmax Function

I Given any h ∈ RL, we define softmax(h) ∈ [0, 1]L as

softmaxi(h) :=
exp(hi)∑L
j=1 exp(hj)

∀i = 1 . . . L

I Check nonnegativity and normalization

I Check shift-invariance: for any c ∈ R (elementwise addition)

softmax(h+ c) = softmax(h)

I Transforms any length-L real-valued vector into a
distribution over {1 . . . L}

softmax([−0.23, 1.51,−2.11]) = [0.15, 0.83, 0.02]

softmax([−∞,−∞, 1.00, 2.00]) = [0.00, 0.00, 0.27, 0.73]

Karl Stratos CS 533: Natural Language Processing 23/30

The Softmax Function

I Given any h ∈ RL, we define softmax(h) ∈ [0, 1]L as

softmaxi(h) :=
exp(hi)∑L
j=1 exp(hj)

∀i = 1 . . . L

I Check nonnegativity and normalization

I Check shift-invariance: for any c ∈ R (elementwise addition)

softmax(h+ c) = softmax(h)

I Transforms any length-L real-valued vector into a
distribution over {1 . . . L}

softmax([−0.23, 1.51,−2.11]) = [0.15, 0.83, 0.02]

softmax([−∞,−∞, 1.00, 2.00]) = [0.00, 0.00, 0.27, 0.73]

Karl Stratos CS 533: Natural Language Processing 23/30

Converting Logits to a Distribution by Softmax

I Softmax on logits makes any model probabilistic

pθ(y|x) :=
exp(scoreθ(x, y))∑L

y′=1 exp(scoreθ(x, y′))
∀y = 1 . . . L

I Softmax does not affect model inference:

log pθ(y|x) = scoreθ(x, y) + SomeFunctionOf(x)

L
arg max

y=1
pθ(y|x) ≡ L

arg max
y=1

scoreθ(x, y)

I Then why do this? For training!

Karl Stratos CS 533: Natural Language Processing 24/30

Converting Logits to a Distribution by Softmax

I Softmax on logits makes any model probabilistic

pθ(y|x) :=
exp(scoreθ(x, y))∑L

y′=1 exp(scoreθ(x, y′))
∀y = 1 . . . L

I Softmax does not affect model inference:

log pθ(y|x) = scoreθ(x, y) + SomeFunctionOf(x)

L
arg max

y=1
pθ(y|x) ≡ L

arg max
y=1

scoreθ(x, y)

I Then why do this? For training!

Karl Stratos CS 533: Natural Language Processing 24/30

Topic Classification with Linear Classifiers

I Problem definition

I Data collection

I Representation

I Modeling
I Estimation

I Softmax
I Training Objective

Karl Stratos CS 533: Natural Language Processing 25/30

Learning as Conditional Density Estimation

I Critical assumption. Data comes from a population
distribution pop

I Dream classifier (but difficult to find)

Classifier∗ = arg min
Classifier: x7→y

Pr
(x,y)∼pop

(Classifier(x) 6= y)

I But we already know the (Bayes optimal) classifier satisfies

Classifier∗(x) =
L

arg max
y=1

pop(y|x)

I New goal: Estimate the conditional distribution pop(y|x)!

pθ(y|x) ≈ pop(y|x)

What minimization problem can we set up to achieve this?

Karl Stratos CS 533: Natural Language Processing 26/30

Learning as Conditional Density Estimation

I Critical assumption. Data comes from a population
distribution pop

I Dream classifier (but difficult to find)

Classifier∗ = arg min
Classifier: x 7→y

Pr
(x,y)∼pop

(Classifier(x) 6= y)

I But we already know the (Bayes optimal) classifier satisfies

Classifier∗(x) =
L

arg max
y=1

pop(y|x)

I New goal: Estimate the conditional distribution pop(y|x)!

pθ(y|x) ≈ pop(y|x)

What minimization problem can we set up to achieve this?

Karl Stratos CS 533: Natural Language Processing 26/30

Learning as Conditional Density Estimation

I Critical assumption. Data comes from a population
distribution pop

I Dream classifier (but difficult to find)

Classifier∗ = arg min
Classifier: x 7→y

Pr
(x,y)∼pop

(Classifier(x) 6= y)

I But we already know the (Bayes optimal) classifier satisfies

Classifier∗(x) =
L

arg max
y=1

pop(y|x)

I New goal: Estimate the conditional distribution pop(y|x)!

pθ(y|x) ≈ pop(y|x)

What minimization problem can we set up to achieve this?

Karl Stratos CS 533: Natural Language Processing 26/30

Learning as Conditional Density Estimation

I Critical assumption. Data comes from a population
distribution pop

I Dream classifier (but difficult to find)

Classifier∗ = arg min
Classifier: x 7→y

Pr
(x,y)∼pop

(Classifier(x) 6= y)

I But we already know the (Bayes optimal) classifier satisfies

Classifier∗(x) =
L

arg max
y=1

pop(y|x)

I New goal: Estimate the conditional distribution pop(y|x)!

pθ(y|x) ≈ pop(y|x)

What minimization problem can we set up to achieve this?
Karl Stratos CS 533: Natural Language Processing 26/30

Cross-Entropy Loss

Cross entropy between pop(y|x) and pθ(y|x)

J(θ) := E
(x,y)∼pop

[− log pθ(y|x)]

If the hypothesis class Θ is expressive enough to model pop,

θ∗ = argmin
θ∈Θ

J(θ) ⇒ pop(y|x) = pθ∗(y|x) ∀x, y

If not, it will still find some projection of pop onto Θ

Karl Stratos CS 533: Natural Language Processing 27/30

Picture

all models

pop(y|x)

Hypothesis class F

pθ∗(y|x)

ap
pr

ox
.

Karl Stratos CS 533: Natural Language Processing 28/30

Empirical Cross-Entropy Loss

Don’t know pop, but can sample (x1, y1) . . . (xN , yN)
iid∼ pop︸ ︷︷ ︸

(training data)

ĴN(θ) := −
1

N

N∑
i=1

log pθ(yi|xi)

By the law of large numbers, ĴN (θ)→ J(θ) as N →∞
I ĴN (θ) is defined by N training examples as well as θ!

I But we view it only as a function of θ for optimization

Karl Stratos CS 533: Natural Language Processing 29/30

Empirical Cross-Entropy Loss for Linear Classifiers

Given N iid samples of document-label pairs (xi, yi) from human
annotators, define

ĴN (W, b) =
1

N

N∑
i=1

log

 L∑
y=1

exp(w>y xi + by)

− w>yixi − byi
Training: Unconstrained optimization problem

(W ∗, b∗) = argmin
W∈RV×L, b∈RL

ĴN(W, b)

Important questions

I When is ĴN minimized for finite N?

I Are there multiple local minima (i.e., is ĴN nonconvex)?

I Can we optimize ĴN efficiently even if N is really large?

Karl Stratos CS 533: Natural Language Processing 30/30

