
CS 533: Natural Language Processing

Natural Language Understanding,
Pretrained Language Models

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/29

Natural Language Understanding (NLU) Tasks

I Tasks that (1) cannot be solved by just using word-level
patterns (must use logic, predicate/argument structure, etc.),
(2) require “common sense” outside task-specific supervision

I Tasks not considered NLU
I Topic classification: Bag-of-words linear classifier works fine
I Short translation: Mapping self-contained, no need for much

external knowledge

I Tasks considered NLU
I Sentiment analysis: A few instances do require genuine

language understanding
I Natural language inference (NLI): “If Liz likes John, is it the

case that Liz loves John?”
I Question answering: “Why does Queen Elizabeth sign her

name Elizabeth R?”
I Coreference resolution: “The trophy doesn’t fit in the suitcase

because [it]’s too big.”

Karl Stratos CS 533: Natural Language Processing 2/29

Natural Language Inference (NLI)

I Can be framed as sentence-pair classification
I Input. (Premise, Hypothesis)
I Output. Entailment (E), contradiction (C), or neutral (N)

I Examples (Bowman et al., 2015)

(A soccer game with multiple males playing., Some men are playing a sport.)→ E

(A black race car starts up in front of a crowd of people., A man is driving down a lonely road.)→ C

(An older and younger man smiling., Two men are smiling and laughing at the cats playing on the floor.)→ N

I MNLI (Williams et al., 2018): 393k training instances, 20k test
I Annotation by crowdsourcing (relatively easy for humans)
I Human accuracy: 92
I CBOW-based classifier accuracy: 56
I BiLSTM-based classifier accuracy: ≈ 70

Karl Stratos CS 533: Natural Language Processing 3/29

Question Answering (QA)

I Can be framed as predicting an answer span in a passage
given a passage-question pair

I Early work: SQuAD dataset (Rajpurkar et al., 2016)

I Input.
I Passage: “In meteorology, precipitation is any product of the

condensation of atmospheric water vapor that falls under
gravity. The main forms of precipitation include drizzle, rain,
sleet, snow, graupel and hail . . .”

I Question: “What causes precipitation to fall?”

I Output. Span (17, 18), corresponding to “gravity”

I Typical architecture: Joint encoding of passage & question,
then softmax over passage positions

I Many challenges in defining QA tasks
I Unlike MT, difficult to obtain natural data. SQuAD asked

annotators to create questions answerable by passage
I Spurious occurrences of answer string (e.g., “three” can

appear in irrelevant context)
Karl Stratos CS 533: Natural Language Processing 4/29

Example: Natural Questions Dataset (Kwiatkowski et al., 2019)

I 307k training instances, 7.8k
evaluation

I Input. (Question, Wikipedia Page)

I Questions: Real Google queries

I Output.

1. Long answer: Either a paragraph
that answers the question, or
not-answerable

2. Short answer: Either a short span
(e.g., entity), yes/no, or null

I F1 evaluation (long answer, dev)

I Human: 73.4
I DocumentQA (BiRNN/attention,

init with pretrained word
embeddings): 46.1

Karl Stratos CS 533: Natural Language Processing 5/29

Coreference Resolution (Coref)
I General coref: Identify and cluster mentions based on

referenced entities

I Simplification: Winograd Schema Challenge (WSC) (Levesque et

al., 2011)

I The drain is clogged with hair. It has to be cleaned.
I The drain is clogged with hair. It has to be removed.

I Reduction to NLI (WNLI)

(The drain is clogged with hair., The hair has to be cleaned)→ C

(The drain is clogged with hair., The drain has to be cleaned)→ E

(The drain is clogged with hair., The hair has to be removed)→ E

(The drain is clogged with hair., The drain has to be removed)→ C

I WNLI: 634 training instances, 146 test
I Human accuracy 96
I Any neural model trained from scratch: 65.1 (random)

Karl Stratos CS 533: Natural Language Processing 6/29

Other NLU Tasks

I Sentence similarity: Formulated as sentence-pair regression

(A person is combing a cat hair., A person is brushing a cat.)→ 4.4

(A man is cutting up a potato., A man is cutting up carrots.)→ 2.4

(A boy is riding a horse., A monkey is riding a bus.)→ 0.4

I STS-B dataset: 7k training examples, 1.4k test.
I Performance (correlation): Human 92.7, BiLSTM 65-70

I Linguistic acceptability: Single-sentence binary classification
(grammatical vs ungrammatical)

She voted for herself.→ 1

Maryann should leaving.→ 0

Kim persuaded it to rain.→ 0

Books were sent to each other by the students.→ 0

I CoLA (Warstadt et al., 2018): 8.5k training examples, 1k test.
I Performance (correlation): Human 66.4, BiLSTM 15

Karl Stratos CS 533: Natural Language Processing 7/29

NLU Benchmarks

I Collection of tasks for testing NLU capabilities of a system

I Example: GLUE (Wang et al, 2018)

I Only train/dev data released: System submits predictions
online to receive test performance

I Single score by macro-average
I Human GLUE score: 87.1
I BiLSTM GLUE score: 63.7

I Typically consider simple classification/regression tasks
I Complex tasks like full-fledged QA and coref not included,

must be considered additionally
Karl Stratos CS 533: Natural Language Processing 8/29

Need for Transfer Learning

I NLU tasks, and other downstream tasks, supply limited
supervision (≈ 300k labeled examples at most)

I We can’t train a model from scratch for each task and expect
it to develop general language understanding capabilities

I Solution: Transfer Learning
I Use knowledge aquired to solve task A to help better solve a

related task B

I In particular: Unsupervised transfer learning
I A doesn’t need supervision
I Form of semi-supervised learning (lots of unlabeled data, small

labeled data)

I Central question: What task in NLP can we train a model for
with no annotation, yet it’s closly related to many
downstream tasks?

Karl Stratos CS 533: Natural Language Processing 9/29

Pretrained Neural Language Models

I Family of neural LMs “pretrained” on a large quantity of
unlabeled text

I Given a downstream task, copy the pretrained LM weights and
“finetune” them on a small quantity of labeled data

I Variations possible: Hold pretrained weights fixed, only train a
new classification layer

I We don’t necessarily care about pretraining itself, as long as
the resulting model is useful for downstream tasks.

I Flexibility in designing the pretraining objective

I Some landmarks: Word2vec, ELMo, BERT, GPTs
I Initial works like word2vec only considered pretraining word

embeddings
I Later works consider pretraining an entire LM capable of

producing contextual word embeddings

Karl Stratos CS 533: Natural Language Processing 10/29

Word2Vec (Mikolov et al., 2013): CBOW With Negative Sampling

I Given vocab V and dimension d, learn
I Word embedding matrix: W = [w1 . . . w|V|] ∈ Rd×|V|

I Context word embedding matrix: C = [c1 . . . c|V|] ∈ Rd×|V|

I Training: Draw a random n-grams (x1 . . . xn) from a corpus
with middel word xmid. Set

ccbow =
1

n− 1

n∑
i=1: i 6=mid

cxi

Draw K random words xneg

1 . . . xneg

K ∼ q where q is some
distribution over V (e.g., empirical unigram distribution).
Take a gradient step on the single-example loss

Ĵsingle(W,C) = − log σ(w>xmid
ccbow)−

K∑
k=1

log σ(−w>xneg
k
ccbow)

Karl Stratos CS 533: Natural Language Processing 11/29

Distributional Word Representations

. . . this dog is a poodle . . .

. . . love my poodle . . .

. . .poodle and schnauzer . . .

. . .terrier is a dog . . .

. . . love your terrier . . .

. . . schnauzer, or terrier . . .

. . .frog is an amphibian . . .

. . .frog from predators . . .

. . . cold-blooded, a frog . . .

poodle

terrier

frog

||poodle− terrier||
� ||poodle− frog||

”You shall know a word by the company it keeps.” -Firth

Karl Stratos CS 533: Natural Language Processing 12/29

Word2Vec in Practice
I Can be viewed as a stripped down LM

I Predict what the middle word is given a bag of context words
I Approximate cross-entropy loss by negative sampling (must

specify number of negatives, e.g., K = 5)
I Efficient training, CPU friendly, parallelizable over corpus with

asynchronous updates
I Only a few hours to train on the entire Wikipedia corpus (3

billion tokens, vocab size > 100k)

I Once trained, use wx ∈ Rd as embedding of word x ∈ V
I Typically discard context embeddings cx

I In a downstream task, initialize word embeddings with wx
I Significant improvement over randomly initialized word

embeddings if labeled data is small
I E.g., CoNLL 2003 NER performance using BiLSTM-CRF

(Lample et al., 2016): 83.6→ 90.9
I Other non-neural word embedding techniques: GloVe

(Pennington et al., 2014), spectral (Stratos et al., 2015)

I All based on modeling distributional similarity between words
by compressing context, have similar quality

Karl Stratos CS 533: Natural Language Processing 13/29

Nearest Neighbor Examples
Top-8 words with highest cosine similarity using spectral word
embeddings

rochester seattle yahoo starbucks lol

binghamton tacoma linkedin dunkin yeah

albany portland msn mcdonalds heh

hartford washington facebook mcdonald’s kidding

utica denver digg domino’s thats

syracuse oakland aol applebee’s damn

elmira baltimore google 7-eleven ahh

bridgeport chicago friendster kfc gosh

newark cleveland orkut walmart kinda

smile frown 1 1945 second

smiles frowns 2 1944 third

smiling frowned 3 1943 fourth

grin disapprove 4 1942 fifth

wide-eyed cringe 5 1941 first

laugh discourages 6 1946 sixth

cheerful overreact 8 1940 seventh

eyes detest 7 1939 eighth

grinning forbid 9 1947 ninth

Karl Stratos CS 533: Natural Language Processing 14/29

Limitations of Pretrained Word Embeddings

I Non-contextual: “saw” below gets the same word embedding

the man saw the cut
the saw cut the man

I Can use contextualizer on top like BiLSMs in finetuning, but
no transfer learning for that module

I Not helpful when downstream task has enough training data
I Example: MT, similar performance with random vs pretrained

word embeddings

I Intuition: Generic word similarity is useful, but definitely not
enough for general language understanding

I Natural next step: Transfer an entire LM, rather than just
lookup tables

I Took a while before this happened because of “word
embedding inertia”

I Word embeddings are so simple and easy to train,
interpretable, reliably effective

I Much harder to transfer a contextual encoder
Karl Stratos CS 533: Natural Language Processing 15/29

ELMo (Peters et al., 2017)

I Embeddings from Language Models
I One of the first truly successful pretrained LMs for transfer

learning, building on earlier works like
I CoVe (McCann et al., 2017): Transfer learning by MT
I TagLM (Peters et al., 2017): Transfer learning also by

bidirectional LM. ELMo uses more layers and better techniques

I Character-level input
I Run CNN over characters instead of having a static embedding

for each word
I Prediction is still word level

I Backward LM that encodes context to the right, trained
jointly

I Light-weight scheme to tailor ELMo embeddings for
downstream tasks without finetuning ELMo itself

Karl Stratos CS 533: Natural Language Processing 16/29

Character-Level Input

I Each word w treated as a sequence of characters c ∈ C where
|C| = 262 (UTF-8 encoding)

I Character embedding dimension 16: input matrix C ∈ R262×16

I CNN filter sizes 1–7 with increasing filter numbers (32. . .
1024) and max pooling: Outputs uw ∈ R2048

(Image credit: Petr Lorenc)

I Final word rep: vw = Feedforward(Highway2(uw)) ∈ R512

I This is the input to LSTMs, shared between forward/backward
LMs

Karl Stratos CS 533: Natural Language Processing 17/29

Bidirectional Language Modeling

I Forward LM
I Two-layer LSTM cell: Input dim 512, cell state dim 4096 but

hidden state dim projected back to 512

I Backward LM: Same architecture but distinct parameters

I Shared classification layer W ∈ R512×V where V = 793471
vocab extracted from 1 Billion Word Benchmark dataset

I Loss: Sum of forward and backward LM losses

Ĵx(θ) = −
T∑

t=1

(
log p(xt|x<t; θcnn, θforward, θsoftmax)+

log p(xt|x>t; θcnn, θbackward, θsoftmax)

)

Karl Stratos CS 533: Natural Language Processing 18/29

The ELMo Embeddings

I ELMo parameters frozen after pretraining
I Given sentence x1 . . . xT , running ELMo yields

1. Word reps vx1
. . . vxT

∈ R512 from CNN, can be precomputed

2. Forward LSTM hidden states ~h
(l)
1 . . .~h

(l)
T ∈ R512 for each layer

l = 1, 2 where ~h
(l)
t is a function of x≤t

3. Backward LSTM hidden states ~h
(l)

1 . . . ~h
(l)

T ∈ R512 for each

layer l = 1, 2 where ~h
(l)
t is a function of x≥t

I 1024-dimensional contextual embedding of t-th word

ELMot = γ

(
α0

[
vxt

vxt

]
+ α1

[
~h
(1)
t

~h
(1)

t

]
+ α2

[
~h
(2)
t

~h
(2)

t

])
Introducing learnable scalar parameters γ, αl ∈ R to scale
embeddings from different layers for target task

I In a downstream task, just concatenate with initial word
embedding

I E.g., Input to RNN is word embeddings concat with ELMot.
Karl Stratos CS 533: Natural Language Processing 19/29

Results
I 10 epochs on 1B Word Benchmark (2 weeks on 3 GPUs)

I 800 milion tokens of news data, vocab size 800k
I Append ELMo embeddings at input in various baseline models

(Image credit: Isha Salian)
Karl Stratos CS 533: Natural Language Processing 20/29

Limitations of ELMo

I ELMot ∈ R1024 encodes both left/right context, but shallowly
bidirectional

h

x x

h

(not bidirectional until later) (deeply bidirectional)

I Only transferring frozen contextual embeddings
I Must train task-specific encoders like LSTMs on top

I How can we pretrain an LM that’s deeply bidirectional and
almost “sufficient” on its own?

Karl Stratos CS 533: Natural Language Processing 21/29

BERT (Devlin et al., 2019)

I Bidirectional Encoder Representations from Transformers

I Insight: Pretrain an LM in such a way that it’s “almost” the
same as how it’ll be used for downstream tasks

I How do we use an NLP model for downtream tasks?

1. Apply powerful transformation on tokens to get contextual
token embeddings.

2. Add a linear classifier on top.

I We want to pretrain an LM for 1, without limiting it to
forward or backward token prediction

I Central question: How can we do language modeling while
“seeing” the whole input text?

Karl Stratos CS 533: Natural Language Processing 22/29

Masked Language Modeling (MLM)

I Mask out tokens (wordpieces) at random

the man went to the [MASK] to buy a [MASK] of milk

The model receives the input above and predict what the
missing words are: “store”, “gallon”

I Crucially, can use context to the right all the time!

I Need to be careful
I Too little masking: too expensive to train
I Too much masking: not enough context
I Test time: no [MASK] input, so training should also handle no

[MASK] input sometimes

I BERT masking scheme: Given input text,
I Choose 15% of tokens uniformly at random
I For each chosen token, replace it with [MASK] 80% of the

time, a random token 10% of the time, and leave it unchanged
10% of the time.

Karl Stratos CS 533: Natural Language Processing 23/29

Details of BERT
I Wordpiece tokenization: Vocab size 30k (cased/uncased

versions)
I Transformer encoder

I bert-base: 12 layers, 12 attention heads, 110m parameters
I bert-large: 24 layers, 16 attention heads, 340m parameters

I Input: Sentence pair (marked at input by additive
embeddings), predict consecutive (50% random) in addition
to MLM

I Introduced atomic special tokens
I [CLS]: First token used for sent pair classification
I [SEP]: Separater between sentences
I [MASK]: Mask token

I Pretrained on BooksCorpus (800m tokens) + English
Wikipedia (2.5b tokens)

I Batch size 256 seqs of 512 tokens: 128k tokens per batch
I 1m updates: 40 epochs over 3.3b tokens
I Adam with weight decay, linear LR warmup step 10k, dropout

0.1, gelu activation
I Other tricks: E.g., train on length-128 for 90% steps first

Karl Stratos CS 533: Natural Language Processing 24/29

Illustration of BERT

[CLS] the dog [MASK] [SEP] the cat [MASK] away [SEP]

IsNext barked ran

Transformer
(Vaswani et al., 2017)

Karl Stratos CS 533: Natural Language Processing 25/29

Using Pretrained BERT
I Add a light-weight classification layer for each task
I Finetune. Instead of holding BERT parameters frozen, jointly

optimize them all along with added layer

I Not very sensitive to input representation, sensible choices
I Sentence pair: “[CLS] s1 [SEP] s2”
I Single sentecne: “[CLS] s”

I Importantly, often just works with one of a small number of
hyperparameter configurations!

I Batch size: 16, 32, dropout: 0.1, learning rate (Adam): 5e−5,
3e−5, 2e−5, 3-10 epochs

Karl Stratos CS 533: Natural Language Processing 26/29

BERT-Based Architectures for Downstream Tasks

Karl Stratos CS 533: Natural Language Processing 27/29

The Era of Pretrained Language Models

(Image credit: Graves and Ranzato)

I GPT: Transformer LM (use last hidden state)
I The success of BERT started an era of large-scale pretrained

language models, in particular trained by MLM
I RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019), T5

(Raffel et al., 2019), . . .

Karl Stratos CS 533: Natural Language Processing 28/29

The Unreasonable Effectiveness of Pretrained Transformers

I Game of scale/engineering: Marginal changes in
approach/architecture/loss

I T5 has 5 billion parameters, trained on 1 trillion tokens

I GLUE score: human 87.1, transformer 90.3 (T5)
I Recall: WNLI seems to require common sense. Human

accuracy 95.9. Transformer accuracy 95.9 (ERNIE).

I Weird situation
I Before: How can we make it work?
I Now: How can it work so well???

I Explosion of research around pretrained transformer
LMs/MLMs

I What information does a pretrained MLM contain? How can it
even seem to solve the Winograd challenge?

I How can we make training more data-efficient (e.g., ELECTRA
(Clark et al., 2020))?

I How can we train multi-lingual transformers effectively?
I And many more

Karl Stratos CS 533: Natural Language Processing 29/29

