
CS 533: Natural Language Processing

Feedforward Network,
Universality, Backpropagation

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/40

Review: Overfitting

Model succeeds in fitting (finite) training data by exploiting
spurious input-label correlations that do not generalize.

Guard against overfitting by always setting aside a validation set.
Regularize by early stopping, weight penalty, and other methods

Karl Stratos CS 533: Natural Language Processing 2/40

Review: Stochastic Gradient Descent

Gradient descent: Start from some θ0 ∈ Rd, repeatedly minimize
local approx. of f around θt by

θt+1 = θt − ηt︸︷︷︸
“learning rate”

∇f(θt)︸ ︷︷ ︸
gradient of f at θt

𝜃₀𝜃₁𝜃₂𝜃₃

Stochastic: If f is an average of “component” functions, can
quickly estimate ∇f from a mini-batch

Karl Stratos CS 533: Natural Language Processing 3/40

Gradient Descent Convergence

I Generally, for convex functions, gradient descent will converge
I Stop by (a combination of): max number of iterations, plateau

in validation error, and other criteria

I The learning rate η may be very important to ensure rapid
convergence (or convergence at all)

(LeCun et al, 1996)

Karl Stratos CS 533: Natural Language Processing 4/40

Review: Feature Learning

Linearly separable Not linearly separable (e.g., XOR)

Accuracy 100% 3 Accuracy ≤ 50% 7

Feature learning (aka. deep learning, neural networks)

1. Learn an input encoder encθ : Rd → RH alongside linear
classifier!

2. Use SGD to minimize a loss function differentiable in θ

Karl Stratos CS 533: Natural Language Processing 5/40

Deep Learning: Definition

I A system that employs a hierarchy of features of the input,
learned end-to-end jointly with the predictor.

f(x; θ1, θ2, . . . , θL) = FL(FL−1(· · ·F2(F1(x; θ1); θ2) · · ·); θL)

I We will refer to Fk as layer k

I E.g., deep learning for classification:

fc(x;w,b, θ1, θ2, . . . , θL) = wc · f(x; θ1, θ2, . . . , θL) + bc

I All parameters (w,b, θ1, θ2, . . . , θL) are learned jointly
I We can think of f(x; θ1, θ2, . . . , θL) as learned features for x

or a learned representation of x (doesn’t depend on the class
being scored)

I Learning methods that are not deep:
SVMs, nearest neighbor classifiers, decision trees, perceptron

Karl Stratos CS 533: Natural Language Processing 6/40

Example: Feedforward Classifier

Encoder

I encU,a : Rd → RH defined by encU,a(x) = g(U>x+ a)

I Parameters: U = [u1 . . . uH] ∈ Rd×H and a ∈ RH

I Nonlinear and sub-differentiable activation function
g : R→ R, applied elementwise (i.e., [g(z)]i = g(zi))

Linear classifier (L classes)

I Parameters: W = [w1 . . . wL] ∈ RH×L and b ∈ RL

I Model: pθ(y|x) ∝ exp(w>y encU,a(x) + b)

Training: Given (x1, y1) . . . (xN , yN) ∈ Rd × {1 . . . L}, minimize

ĴN (θ) = − 1

N

N∑

i=1

pθ(yi|xi)

Central question: What is the gradient of ĴN with respect to
θ = (W, b, U, a)?
Karl Stratos CS 533: Natural Language Processing 7/40

Linear Classifier Gradients

Define hi := encU,a(xi). Then

ĴN (θ) =
1

N

N∑

i=1

log

L∑

y=1

exp(w>y hi + by)

− w>yihi − byi

hi is not a function of (W, b), so we already know the gradients
from before: for each y ∈ {1 . . . L}

∇wy ĴN (W, b) =
1

N

N∑

i=1

pθ(y|xi)− [[y = yi]]︸ ︷︷ ︸

1 if true, 0 else

hi

∇by ĴN (W, b) =
1

N

N∑

i=1

pθ(y|xi)− [[y = yi]]

Karl Stratos CS 533: Natural Language Processing 8/40

Feedforward Encoder Gradients

I ĴN (θ) is a function of Uj,k ∈ R through h1 . . . hN ∈ RH .

I By the chain rule:

∂ĴN (θ)

∂Uj,k
=

N∑

i=1

(
∂ĴN (θ)

∂hi

)>

︸ ︷︷ ︸
1×H

∂hi
∂Uj,k︸ ︷︷ ︸
H×1

I ∂ĴN (θ)
∂hi

: Gradient of ĴN (θ) ∈ R wrt. hi ∈ RH (easy)

I ∂hi
∂Uj,k

: Jacobian of hi ∈ RH wrt. Uj,k ∈ R (also easy)

[
∂hi
∂Uj,k

]

t

=
∂[hi]t
∂Uj,k

Karl Stratos CS 533: Natural Language Processing 9/40

Feedforward Encoder Gradients: Continued

Exercise: Verify that for δi :=
∑L

y=1 pθ(y|xi)wy − wyi ∈ RH

∂ĴN (θ)

∂hi
=

1

N
δi

∂hi
∂Uj,k

= ek � g′(Uxi + a)[xi]j

where ek ∈ {0, 1}H is the k-th standard basis vector and � is
elementwise multiplication. Then

∇U ĴN (θ) =
1

N

N∑

i=1

xi︸︷︷︸
d×1

(δi � g′(U>xi + a))>︸ ︷︷ ︸
1×H

∈ Rd×H

Use this to take a gradient step on U ∈ Rd×H , similarly for a ∈ RH

Karl Stratos CS 533: Natural Language Processing 10/40

Forward and Backward Pass
Forward

zi = U>xi + a RH

hi = g(zi) RH

pi = softmax(W>hi + b) [0, 1]L

J =
1

N

N∑

i=1

log[pi]yi R

Backward (Gradients for W, b omitted)

δi = Wpi − wyi RH

∇U ĴN (θ) =
1

N

N∑

i=1

xi(δi � g′(zi))> Rd×H

∇aĴN (θ) =
1

N

N∑

i=1

δi � g′(zi) RH

Karl Stratos CS 533: Natural Language Processing 11/40

Nonlinear Activation Function

I Nonlinear g : R→ R crucial, otherwise we have a linear
classifier again (assuming H ≥ min {d, L})

scoreθ(x, y) = w>y (U>x+ a) + by = v>y x+ cy

where V = UW ∈ Rd×L and c = W>a+ b

I Popular activation functions

ReLU(z) = max {0, z} ReLU′(z) =

{
1 if z ≥ 0
0 otherwise

tanh(z) =
exp(2z)− 1

exp(2z) + 1
tanh′(z) = 1− tanh(z)2

σ(z) =
1

1 + exp(−z) σ′(z) = σ(z)(1− σ(z))

Karl Stratos CS 533: Natural Language Processing 12/40

Popular Activation Functions

sigmoid, y = σ(x) = 1
1+exp(−x) tanh, y = tanh(x)

rectified linear unit (ReLU), y = max {0, x}:

Karl Stratos CS 533: Natural Language Processing 13/40

Nonconvex Objective

I ĴN is not convex in (U, a).

I Gradient descent will still find some stationary point.
I But we don’t really care if the stationary point is globally

optimal for ĴN (in fact that might be bad due to overfitting)
I What we care: performance on downstream task

Karl Stratos CS 533: Natural Language Processing 14/40

Universal Learners

I Feedforward with a nonlinear layer is highly expressive
I Can separate non-separable examples (see Jupyter Notebook)

I Natural question: What class of functions can it express?
I The answer turns out to be “any function”!

I . . . If it has enough parameters
I For this reason, we say neural networks are universal learners

I Nothing exciting: This simply says we can memorize all N
examples if H = O(N)

I Active research on universality with limited number of
parameters

Karl Stratos CS 533: Natural Language Processing 15/40

Universality of Feedforward

Claim. Given any (x1, y1) . . . (xN , yN) ∈ Rd × R (assume xi
distinct), there exists a feedforward network f : Rd → R with
2N + d parameters such that f(xi) = yi for all i = 1 . . . N .

Proof. (Zhang et al., 2016)

1. Find a ∈ RN so that zi = a>xi are distinct.

2. WLOG assume z1 < z2 < · · · < zN .

3. Find b ∈ RN so that b1 < z1 < b2 < z2 < · · · < bN < zN .

4. Define A ∈ RN×N by [A]i,j = max {0, zi − bj}.
5. Note [A]i,j > 0 iff zi > bj iff i ≥ j, so A is (lower) triangular.

6. Define f(x) := w>ReLU((a>x . . . a>x) + b). We can find
w ∈ RN such that yi = f(xi) for all i since this is equivalent
to solving for w in (y1 . . . yN) = Aw and A is invertible.

�

Karl Stratos CS 533: Natural Language Processing 16/40

Universality of Feedforward

Claim. Given any (x1, y1) . . . (xN , yN) ∈ Rd × R (assume xi
distinct), there exists a feedforward network f : Rd → R with
2N + d parameters such that f(xi) = yi for all i = 1 . . . N .

Proof. (Zhang et al., 2016)

1. Find a ∈ RN so that zi = a>xi are distinct.

2. WLOG assume z1 < z2 < · · · < zN .

3. Find b ∈ RN so that b1 < z1 < b2 < z2 < · · · < bN < zN .

4. Define A ∈ RN×N by [A]i,j = max {0, zi − bj}.
5. Note [A]i,j > 0 iff zi > bj iff i ≥ j, so A is (lower) triangular.

6. Define f(x) := w>ReLU((a>x . . . a>x) + b). We can find
w ∈ RN such that yi = f(xi) for all i since this is equivalent
to solving for w in (y1 . . . yN) = Aw and A is invertible.

�

Karl Stratos CS 533: Natural Language Processing 16/40

Universality of Feedforward

Claim. Given any (x1, y1) . . . (xN , yN) ∈ Rd × R (assume xi
distinct), there exists a feedforward network f : Rd → R with
2N + d parameters such that f(xi) = yi for all i = 1 . . . N .

Proof. (Zhang et al., 2016)

1. Find a ∈ RN so that zi = a>xi are distinct.

2. WLOG assume z1 < z2 < · · · < zN .

3. Find b ∈ RN so that b1 < z1 < b2 < z2 < · · · < bN < zN .

4. Define A ∈ RN×N by [A]i,j = max {0, zi − bj}.
5. Note [A]i,j > 0 iff zi > bj iff i ≥ j, so A is (lower) triangular.

6. Define f(x) := w>ReLU((a>x . . . a>x) + b). We can find
w ∈ RN such that yi = f(xi) for all i since this is equivalent
to solving for w in (y1 . . . yN) = Aw and A is invertible.

�

Karl Stratos CS 533: Natural Language Processing 16/40

Universality of Feedforward

Claim. Given any (x1, y1) . . . (xN , yN) ∈ Rd × R (assume xi
distinct), there exists a feedforward network f : Rd → R with
2N + d parameters such that f(xi) = yi for all i = 1 . . . N .

Proof. (Zhang et al., 2016)

1. Find a ∈ RN so that zi = a>xi are distinct.

2. WLOG assume z1 < z2 < · · · < zN .

3. Find b ∈ RN so that b1 < z1 < b2 < z2 < · · · < bN < zN .

4. Define A ∈ RN×N by [A]i,j = max {0, zi − bj}.
5. Note [A]i,j > 0 iff zi > bj iff i ≥ j, so A is (lower) triangular.

6. Define f(x) := w>ReLU((a>x . . . a>x) + b). We can find
w ∈ RN such that yi = f(xi) for all i since this is equivalent
to solving for w in (y1 . . . yN) = Aw and A is invertible.

�

Karl Stratos CS 533: Natural Language Processing 16/40

Universality of Feedforward

Claim. Given any (x1, y1) . . . (xN , yN) ∈ Rd × R (assume xi
distinct), there exists a feedforward network f : Rd → R with
2N + d parameters such that f(xi) = yi for all i = 1 . . . N .

Proof. (Zhang et al., 2016)

1. Find a ∈ RN so that zi = a>xi are distinct.

2. WLOG assume z1 < z2 < · · · < zN .

3. Find b ∈ RN so that b1 < z1 < b2 < z2 < · · · < bN < zN .

4. Define A ∈ RN×N by [A]i,j = max {0, zi − bj}.
5. Note [A]i,j > 0 iff zi > bj iff i ≥ j, so A is (lower) triangular.

6. Define f(x) := w>ReLU((a>x . . . a>x) + b). We can find
w ∈ RN such that yi = f(xi) for all i since this is equivalent
to solving for w in (y1 . . . yN) = Aw and A is invertible.

�

Karl Stratos CS 533: Natural Language Processing 16/40

Regularization for Deep Learning

I Large neural networks can easily fit random labels.

I Same regularization techniques still useful: early stopping
based on validation performance, l2 weight penalty

I Additional techniques
I Dropout: Randomly make elements zero.
I Label smoothing: Make one-hot label representation {0, 1}L

assign nonzero probabilities to other labels.
I Layer normalization: Standardize elements in a layer.

I Even without explicit regularization, large neural networks can
generalize surprisingly well.

I Some attribute this fact to implicit regularization under SGD:
“Understanding deep learning requires rethinking
generalization” (Zhang et al., 2016)

I But, in practice, explicit regularization definitely helps

Karl Stratos CS 533: Natural Language Processing 17/40

Dropout

“Drop” (i.e., make it zero) each weight value with probability p ∈ [0, 1).
Divide surviving weights by 1− p to restore the overall size of weights.

Idea: force the hidden layer to learn robust patterns, not memorize

I Only done for training: at test time no dropping or rescaling.

I How does this change the gradients?

Karl Stratos CS 533: Natural Language Processing 18/40

Label Smoothing

I Cross-entropy loss H(pop(y|x), pθ(y|x))

I Cross-entropy loss with label smoothing: α ∈ [0, 1]

H((1− α)pop(y|x) + αUnif({1 . . . L}), pθ(y|x))

I α > 0: Assign nonzero probabilities to labels other than gold (“soft
targets”)

ĴN (θ) = − 1

N

N∑

i=1

(1− α) log pθ(yi|xi) +
α

L

L∑

y=1

log pθ(y|xi)

I Shown useful for machine translation and other tasks

I See: “When Does Label Smoothing Help?” (Müller et al., 2019)

Karl Stratos CS 533: Natural Language Processing 19/40

Layer Normalization

I Define LayerNorm : RH → RH by (for some tiny ε > 0 to prevent
division by zero)

µ(h) :=
1

H

H∑

i=1

hi σ2(h) :=
1

H

H∑

i=1

(hi − µ(h))2

LayerNormi(h) =
hi − h̄√
σ2(h) + ε

∀i = 1 . . . H

I This is a differentiable operation, so we will still be able to calculate
gradients of the final loss with respect to parameters.

I If we treat vector elements as independent samples,
h′ = LayerNorm(h) have zero mean and unit variance (“whitened”
or “standardized”).

I Model can’t overfit by making values wildly different

I Related method: batch normalization (normalization across
elements in a batch)

Karl Stratos CS 533: Natural Language Processing 20/40

Bottleneck of Gradient Calculation

Deep learning is a flexible paradigm.

encθ(x) = ReLU(U>x+ a) U ∈ Rd×H , a ∈ RH

encθ(x) = tanh(U> tanh(U>ReLU(U>x))) U ∈ Rd×d

encθ(x) = LayerNorm(ReLU(V >σ(U>x))) U ∈ Rd×H , V ∈ RH×H
′

Any of these encoders can be “plugged” into a linear classifier and
trained by SGD on the cross-entropy loss (which remains
differentiable).

I Bottleneck: Have to derive gradients for every new loss/model

Karl Stratos CS 533: Natural Language Processing 21/40

Automatic Differentiation and Backpropagation

I Automatic differentiation (AD, autodiff) is widely-used in
scientific computing

I Machine learning, optimization, probabilistic programming
(given a program, AD can compute its derivative)

I At a high level, AD has two “modes”: forward and reverse

I Forward mode AD is best when your function outputs a vector
and you have a relatively small number of inputs

I Reverse mode AD is best when your function outputs a scalar
but has many inputs

I Which situation better characterizes machine learning?
I Backpropagation = reverse mode AD

I DAG + chain rule

Karl Stratos CS 533: Natural Language Processing 22/40

DAG

A directed acylic graph (DAG) is a directed graph G = (V,A)
with a topological ordering

1 2 3 4 5 6

V = {1, 2, 3, 4, 5, 6} , VI = {1, 2} , VN = {3, 4, 5, 6}
A = {(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)}

pa(4) = {2, 3}
ch(1) = {3, 5}

ΠG = {(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)} (possible topological orderings)

For backpropagation: usually assume have many roots and 1 leaf

Karl Stratos CS 533: Natural Language Processing 23/40

Computation Graph

I DAG G = (V,A) with a single output node ω ∈ V .
I Every node i ∈ V is equipped with a value xi ∈ R:

1. For input node i ∈ VI , we assume xi = ai is given.
2. For non-input node i ∈ VN , we assume a differentiable

function f i : R|pa(i)| → R and compute

xi = f i((xj)j∈pa(i))

I Thus G represents a function
{
ai
}
i∈VI
7→ xω

I Forward pass
1. Pick some topological ordering π ∈ ΠG

2. For i in order of π, if i ∈ VN is a non-input node, set
xi ← ai := f i((aj)j∈pa(i))

I Forward pass populates xi = ai for every i ∈ V .

Karl Stratos CS 533: Natural Language Processing 24/40

Multiple Possible Computation Graphs

+

×

+

x 3

∏

4

+

×

+

x 3

+

x 3

∏

4 x x

These two computation graphs represent the same expression
(x+ 3)2 + 4x2 but first has fewer nodes/edges.

Karl Stratos CS 533: Natural Language Processing 25/40

Forward Pass: Populate Value Slots
Construct the computation graph associated with the function

f(x, y) := (x+ y)xy2

Compute its output value at x = 1 and y = 2 by performing a
forward pass.

x y

+ *
*

*

1 2

3

3

4

12

Karl Stratos CS 533: Natural Language Processing 26/40

Gradient Slots

I Notation: Input slots xI = (xi)i∈VI , their values aI = (ai)i∈VI
I For every node i ∈ V , we introduce an additional slot zi ∈ R

storing the gradient of xω wrt. xi at xI = aI :

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

I Goal of backpropagation: Calculate zi for every i ∈ V .

Karl Stratos CS 533: Natural Language Processing 27/40

Key Ideas of Backpropagation

I Notation: Parental slots xiI = (xj)j∈pa(i), their values
aiI = (aj)j∈pa(i)

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi︸ ︷︷ ︸
Jacobian of f j wrt xi

∣∣∣∣
xjI=a

j
I

I Backward pass
1. Base case: zω = 1

2. For i in reverse order of π: zi ←∑
j∈ch(i) z

j × ∂fj(xj
I)

∂xi

∣∣∣∣
xj
I=a

j
I

Karl Stratos CS 533: Natural Language Processing 28/40

Key Ideas of Backpropagation

I Notation: Parental slots xiI = (xj)j∈pa(i), their values
aiI = (aj)j∈pa(i)

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi︸ ︷︷ ︸
Jacobian of f j wrt xi

∣∣∣∣
xjI=a

j
I

I Backward pass
1. Base case: zω = 1

2. For i in reverse order of π: zi ←∑
j∈ch(i) z

j × ∂fj(xj
I)

∂xi

∣∣∣∣
xj
I=a

j
I

Karl Stratos CS 533: Natural Language Processing 28/40

Key Ideas of Backpropagation

I Notation: Parental slots xiI = (xj)j∈pa(i), their values
aiI = (aj)j∈pa(i)

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi︸ ︷︷ ︸
Jacobian of f j wrt xi

∣∣∣∣
xjI=a

j
I

I Backward pass
1. Base case: zω = 1

2. For i in reverse order of π: zi ←∑
j∈ch(i) z

j × ∂fj(xj
I)

∂xi

∣∣∣∣
xj
I=a

j
I

Karl Stratos CS 533: Natural Language Processing 28/40

Backward Pass: Populate Gradient Slots

Calculate the gradient of f(x, y) := (x+ y)xy2 with respect to x
at x = 1 and y = 2 by performing backpropagation.

x y

+ *
*

*

1 2

3

3

4

12 1

3

16 16

4

4

∂f(x,y)
∂x

∣∣∣∣
(x,y)=(1,2)

= 16

Karl Stratos CS 533: Natural Language Processing 29/40

Implementation

I Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

I “Add” function creates a child node c with two parents (a, b)
and sets c.z ← 0.

I Each node has an associated forward function.
I Calling forward at c populates c.x = a.x+ b.x (assumes

parents have their values).

I Each node also has an associated backward function.
I Calling backward at c “broadcasts” its gradient c.z (assumes

it’s already calculated) to its parents

a.z ← a.z + c.z

b.z ← b.z + c.z

I In deep learning, input nodes are model parameters, output
node is scalar loss.

I Once we run the forward and backward pass, gradient of the
loss wrt. model parameters stored in the input nodes.

Karl Stratos CS 533: Natural Language Processing 30/40

Multi-Variable Case

I Computation graph in which input values that are vectors

xi ∈ Rd
i ∀i ∈ V

But the output value xω ∈ R is always a scalar

I Gradients: vectors of the same size!

zi ∈ Rd
i ∀i ∈ V

I Backpropagation: same form using the generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂xj

∂xi

∣∣∣∣
xj
I=a

j
I

dj×di

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi︸ ︷︷ ︸
Jacobian of f j wrt. xi

∣∣∣∣
xj
I=a

j
I

Karl Stratos CS 533: Natural Language Processing 31/40

Standard Layers

Deep learning libraries provide many pre-defined nodes (aka. layers)

I Element-wise addition f(x, y) = x+ y, product f(x, y) = x� y
I Element-wise log f(x) = log(x), exponentiation f(x) = exp(x)

I Scalar mult. f(x, α) = αx, matrix-vector product f(A, x) = Ax

I Softmax: f(u) = softmax(u)

I Cross-entropy loss:
f([l1 . . . lN], (y1 . . . yN)) = −(1/N)

∑
i log softmaxyi(li)

I Dropout with probability p: f(u) = Dropp(u)

Each has its own forward and backward function, can plug and play

I Still have to be careful with numerical stability (e.g., always use an
explicit cross-entropy loss layer, rather than using softmax which
has unstable gradient)

I Syntactic sugar: “z = x+ y” creates a computation graph under
the hood

Karl Stratos CS 533: Natural Language Processing 32/40

Loss of Feedforward Classifier

xent

+ y

matmul b

W g

+

matmul a

U x

I Single-example loss

z = Ux+ a

h = g(z)

l = Wh+ b

J = − log softmaxy(l)

I In practice, batch many
examples into one
computation graph

I (No transpose needed, shape
weights appropriately)

Karl Stratos CS 533: Natural Language Processing 33/40

Aside: Dropout Implementation

I Forward: Stochastically define a masking vector scaled by
(1− p), and save it for backward

I Backward: Use saved mask to threshold/scale child gradient

Drop0.3((u1, u2, u3)) =
(u1

0.7
, 0,

u3
0.7

)

∂Drop0.3((u1, u2, u3))

∂(u1, u2, u3)
=

1
0.7 0 0
0 0 0
0 0 1

0.7

(z1, z2, z3)
∂Drop0.3((u1, u2, u3))

∂(u1, u2, u3)
= Drop0.3((z1, z2, z3))

Karl Stratos CS 533: Natural Language Processing 34/40

Initialization Strategies

I Non-convex objective; initialization is important

I All zeros? Bad idea: all units learn the same thing!
I Random: small values (e.g., N (0, .01),Unif(−0.01, 0.01))

I Problem: variance of activation grows with number of inputs

I The “Xavier” scheme (Glorot et al.): normalize the scale to
provide roughly equal variance throughout the network

I If n inputs, draw from N (µ = 0, σ2 = 1/n)
I Problem: implicitly assumes linear activations, breaks with

ReLUs

I The “Kaiming” scheme (He et al): designed for ReLUs
I Draw from N (0, 2/n), where n is the number of inputs

I Note: still OK to init biases with zeros

Karl Stratos CS 533: Natural Language Processing 35/40

Learning Rate for Neural Networks

I For deep networks, setting the right learning rate is crucial.

I Typical behaviors, monitoring training loss:

(A. Karpathy)

I High LR → NaN crash, usually fixable by making LR smaller

Karl Stratos CS 533: Natural Language Processing 36/40

Gradient Descent with Momentum

I SGD has trouble navigating “ravines” where surface curves
much more steeply in one dimension than in another,

I SGD oscillates across the slopes of the ravine, making hesitant
progress towards the (local) optimum.

I Momentum helps accelerate SGD in the
relevant direction and dampens
oscillations.

∆θt = γ∆θt−1 + ηt∇J(θt)

θt+1 = θt −∆θt (Goodfellow et al.)

Karl Stratos CS 533: Natural Language Processing 37/40

Gradient Clipping

I Because of nonlinearity gradient vectors can “explode”
I Particularly problematic if the network has many layers (e.g.,

recurrent). Why? Result: NaN loss

I Helpful trick: clip gradient update to have norm at most C

∆θ 7→ C
∆θ

||∆θ||
I Intuition: navigate steep local areas more conservatively

I Doesn’t change objective (only for updating weights). “Never
hurts”, set C to be very large to turn it off.

Karl Stratos CS 533: Natural Language Processing 38/40

Ensembles of networks

I We may want to train multiple networks and somehow
combine them

I Reduces variance (we have stochastic training of non-convex
objective)

I Directly average the network weights? Terrible idea

I Averaging unit activations: equally bad

I Better idea: average the predictions

I Multi-class settings: output of network t is
pt = (pt(y = 1), . . . , pt(y = L)) then use 1

T

∑
t pt

Karl Stratos CS 533: Natural Language Processing 39/40

Need for Specialized Neural Architectures

I Feedforward implicitly assumes the input is a single vector.

I NLP: Input is a sequence!
I Option 1: BOW representation

I Loses lots of information (e.g., ordering), high-dimensional

I Option 2: Giant feedforward with input dimension = max
sequence length

I Computationally intractable, too many parameters to learn

I Solution: Develop specialized architectures that can handle
variable input lengths.

I Example: Convolutional, recurrent, transformer

I Important to keep in mind: These specialized architectures are
still “feedforward” (with weight sharing)

I Feedforward: building blocks of deep learning

Karl Stratos CS 533: Natural Language Processing 40/40

