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Semi-Supervised Learning with VAEs

I Limited labeled data L = {(x1, y1) . . . (xN , yN )}
I Unlabeled data U = {x′1 . . . x′M} where M � N

I LVGM (Kingma et al., 2014)

pθ(y, z, x) = πθ(y)×N (0d, Id×d)(z)× κθ(x|y, z)

Label y treated as latent on U (z ∈ Rd always latent)

I Inference network

qφ(y, z|x) = qφ(y|x)×N (µφ(x, y), diag(σ
2
φ(x)))(z)

I “ELBO-regularized classification”: Maximize

ÊLBO
L

XY (θ, φ) + ÊLBO
U

X(θ, φ) +
α

N

N∑
i=1

log qφ(yi|xi)

Use qφ(y|x) as classifier, κθ(x|y, z) as label-conditional
generator
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Prior-Based Approach to Posterior Collapse

I Recall: Can kill KL by setting qφ(z|x) = π(z)

ELBO(θ, φ) = E
x∼pop, z∼qφ(·|x)

[log κθ(x|z)]−
(((((((((((

E
x∼pop

[DKL(qφ(·|x)||π)]

I Undesirable local optimum: Decoder κθ will ignore z
I Many tricks to enforce large KL (annealing, free bits)

I Another solution: Use a prior that’s difficult to zero in.
Example: Uniform distribution over (hyper)sphere

(Xu and Durrett, 2018)

Impossible to match with any fixed finite variance
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von Mises-Fisher (vMF) VAE

I Sphere in Rd: Sd−1 =
{
z ∈ Rd : ||z|| = 1

}
I vMF with mean µ ∈ Sd−1 and “concentration” κ ≥ 0

vMF(µ, κ)(z) =
κ

2
d−1

(2π)
d
2 I d

2−1
(κ)

exp(κµ>z) ∀z ∈ Sd−1

Uniform if κ = 0 regardless of µ (e.g., 1
2π for d = 2)

I Set π = vMF(·, 0)
I Set qφ(·|x) = vMF(

µφ(x)
||µφ(x)|| , κ) for some fixed κ > 0

I Then DKL(qφ(·|x)||π) = C(κ) for some positive constant C(κ)

I Also have a (complicated) reparameterization trick (Wood, 1994)

z ∼ vMF

(
µφ(x)

||µφ(x)||
, κ

)
⇔ z = εκ

µφ(x)

||µφ(x)||
+
√
1− ε2κvκ

where vκ ⊥ µφ(x) and εκ are appropriate random noise

I Less susceptible to posetrior collapse, better
likelihood/representation (Xu and Durrett, 2018)
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Enforcing Prior Sparsity
I Assume categorical latent z ∈ {1 . . .K}, want to make prior

over z sparse (i.e., support size � K)
I Example: Non-parametric language model that retrieves a

training sentence z and edits (Guu et al., 2018), expensive to
consider all data

I Solution: Have a sparsity-encouraging prior over the prior

(Image credit: Wikipedia)

I Dirichlet distribution:
Dirα(p) ∝

∏K
z=1 p(z)

αz

I A density over categorical
distributions, sparsity
controllable by α ∈ RK

I Dir<1K concentrated at
point-mass distributions

I Dir>1K concentrated at
uniform distributions
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Example: Sparse Prototype Language Model (He et al., 2020)

I Observation: Sentence x

I Latents: “Prototype” distribution p over N training examples,
t ∈ {1 . . . N}, edit vector z ∈ Rd

I LVGM

pα,θ(p, t, z, x) = Dirα(p)× p(t)× vMF(·, 0)(z)× κθ̄(x|z, t)
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Wikipedia

I Knowledge base (KB): Dataset storing complex information
I Quintessential KB: Wikipedia

I Crowdsourced, constantly growing, free
I Consists of pages organized into namespaces (Main, User,

Wikipedia, Category, etc.)
I Main namespace contains articles (aka. entities),

comprehensive summaries of notable topics
I Not all main pages are articles: Must exclude redirect (e.g., UK

7→ United Kingdom), disambiguation (e.g., Mercury lists
Mercury (planet), Mercury (element), . . .), front

I Multilingual: > 270 languages. Number of articles as of April
2021 (in millions)

I English 6.2, German 2.6, French 2.3, Russian 1.7 . . .

I Articles also labeled by (possibly multiple) categories
organized as a directed graph, e.g., Fields of mathematics

I Main article: Areas of mathematics
I Parents: Mathematics, Subfields by academic discipline, . . .
I Children: Algebra, Probability and statistics, . . .
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Hyperlinks and Tables in Wikipedia

Wikilinks: Internal links mapping text
spans to corresponding articles

Infobox: A table summarizing
the article
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Wikipedia in NLP

I High-quality corpus for unsupervised pretraining
I English Wikipedia: 3.9 billion words (600 words/article)
I Vast knowledge in multiple languages in standard form
I Used by virtually all self-supervised representation learning

methods in NLP (word embeddings, language models)

I Large-scale annotated dataset for entity linking (EL)
I Map a span in text to the underlying entity

I Passages for question answering (QA) and fact checking
I The system must support its prediction by using these passages

I More generally, we call tasks knowledge-intensive if they rely
on a KB

I Tasks generally not considered knowledge-intensive: Topic
classification, sentiment analysis, translation

I Other KBs: Wikias (encyclopedias on fictional works like Star
Wars), PubMed (32 million citations for biomedical
literature), Wikidata (relation instances (e1, r, e2) tightly
integrated with Wikipedia), private KBs (industry)
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Text Retrieval

I When dealing with a KB, often need a very scalable method
for retrieving entries of interest because there are too many

I EL: Given a document x and a mention span (i, j)

1. Retrieve top-K “most relevant” Wikipedia entities e1 . . . eK
2. Predict argmaxk scoreθ(x, i, j, ek)

I QA: Given a question q

1. Retrieve top-K “most relevant” passages p1 . . . pK (e.g., from
all blocks of 512 tokens in Wikipedia)

2. Predict argmax(i,j) scoreθ(q, pk, i, j) as answer string

I Retrieval system choices
I Classical information retrieval (IR): TFIDF, BM25, PageRank.

Effective and task-agnostic but can’t improve by learning
I Neural: Learn a parametric model for task-specific retrieval,

must be extremely efficient
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Document Representation

I Want “similar” documents closer to each other than
“unsimilar” ones under some notion of distance/similarity

query

Science
Politics
Sports

I Starting point: Naive bag-of-words (BOW) embedding

→ (0, 0, 0, 1, . . . , 0, 1, 0, . . . , 0, 0) ∈ {0, 1}V

I Distance: Number of dimensions that differ (“Hamming”)
I Limitation: All term types weighted equally (e.g. “the” and

“Microsoft” have equal weights)
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TFIDF (Term Frequency, Inverse Document Frequency)

I Idea: A term in document matters less if it appears all the
time in other documents

I Each document d ∈ D represented as sparse x(d,D) ∈ RV

xt(d,D) = [[t ∈ d]]︸ ︷︷ ︸
tf(t,d)

(can also be counts)

× log
|D|

|{d′ ∈ D : t ∈ d′}|︸ ︷︷ ︸
idfD(t)

I Note the dot product

x(d,D)>x(d′, D) =
∑
t∈V

tf(t, d)× tf(t, d′)× idfD(t)
2

I Use cosine similarity and cosine distance (bounded in [0, 1]
because all terms nonnegative)

cosD(d, d
′) =

x(d,D)>x(d′, D)

||x(d,D)|| ||x(d′, D)||
distD(d, d

′) = 1− cosD(d, d
′)
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BM25 (Best Match 25)

I Idea: TFIDF with smoothing + document length modeling

I BM25 score between a query q and a candidate document
d ∈ D

BM25D,α,β(d, q) =
∑
t∈q

tfBM25
α,β (t, d)× idfBM25

D (t)

where for some α, β and average document length LDavg

tfBM25
α,β (t, d) =

count(t, d)(α+ 1)

count(t, d) + α(1− β + β(|d| /LDavg))

idfBM25
D (t) = log

|D| − |{d′ ∈ D : t ∈ d′}|+ 0.5

|{d′ ∈ D : t ∈ d′}|+ 0.5

I Currently the go-to choice for IR

I BOW, TFIDF, BM25: Can be generalized to n-gram vectors
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Dual Encoder

I Simplest form of parametric retriever, defines similarity
between two texts x, y by

Dualθ(x, y) = enc
(1)
θ (x)︸ ︷︷ ︸

dense vector in Rd

· enc
(2)
θ (y)︸ ︷︷ ︸

dense vector in Rd

I If enc
(1)
θ = enc

(2)
θ called “siamese” network

I Crucially, similarity search with dense vectors can be done very
efficiently (more on this later)

I Implication: Can precompute embeddings at test time for
efficient inference

I Still not efficient enough for training however

I Common parameterization by pretrained LMs, e.g., [CLS]
embeddings of two independent BERTs

enc
(1)
θ (x) = BERT

(1)
θ ([CLS] x)[0] ∈ Rd

enc
(2)
θ (y) = BERT

(2)
θ ([CLS] y)[0] ∈ Rd
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Training by Noise Contrastive Estimation (NCE)

I Training data: (x1, y1) . . . (xN , yN ) where x is query text and
y is target KB entry (itself text, e.g., entity description,
passage). The space of y is huge (e.g., all possible texts of
length 512), so can’t just optimize softmax-loss

I NCE: An approximation to softmax-loss

JNCE(θ) = −
1

N

N∑
i=1

log
exp(Dualθ(xi, yi))∑K

k=1 exp(Dualθ(xi, yi,k))

where yi,1 . . . yi,K ∼ noise are negative examples for (xi, yi)
drawn from some “noise” distribution

I With suitable K (hyperparameter), training efficient
independently of how large the space of y is

I NCE only for training: At test time consider all KB entries

I Lots of theoretical results on the properties of JNCE, depend on
the choice of noise and K
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Approximate Neareast Neighbor Search

I “Keys” Y ⊂ Rd, huge M := |Y| (possibly billions)

I Goal: Given query x ∈ Rd and number of neighbors K ≤M
compute

Y(x) ∈ K-argmin
y∈Y

||x− y||

Boils down to matrix multiplication since
||x− y||2 = ||x||2 + ||y||2 − 2x>y

I Exact search: Sort ||x− y|| for all y ∈ Y, return top-K.
Time/memory complexity linear in M

I Approximate search based on quantization

y ≈ q1(y) + q2(y − q1(y))

I q1, q2 “quantize” (i.e., cluster) Rd into finite sets

I Idea: Use q1 to reduce search space, use q2 to make up for error

I Efficient multi-GPU implementations available, e.g., Faiss (Johnson et

al., 2017)
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Two-Stage Quantization

I Precompute.

I Cluster Y into I1 . . . I√M . Set q1(y) = centroid(Ii(y))
I Cluster subvectors y = (y1 . . . yb) into 256 groups for some
b = {4, 8, . . . , 64}. Each y is assigned one of 256b possible

clusters indexed by
∑b−1
n=0 256

nqn(yn). Set q2(y) to be the
centroid of that cluster.

I Test time. Given query x ∈ Rd and K,

I Find τ most promising clusters to focus on

Cτ (x) ∈ τ -argmin
i=1...

√
M

||x− centroid(Ii)||

I Search over these clusters for K nearest neighbors using
quantized values

Ŷ(q) ∈ K-argmin
y∈∪i∈Cτ (x)Ii

||x− q(y)||

where the distance is computed efficiently by working with
decomposed form y = (y1 . . . yb)
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Retrieve-and-Rerank Approach

I Often effective to rerank candidates retrieved by a fast
retriever with a more powerful model

I EL (Wu et al., 2020): Link mention m (with left/right context) to
Wikipedia entity e (title + first paragraph)

1. Train a dual encoder retriever by NCE

Dualθ(m, e) = BERT
(1)
θ ([CLS] m)[0] · BERT(2)

θ ([CLS] e)[0]

2. Use the retriever to get top-K (e.g., 64) highest-scoring
entities e(1) . . . e(K). Define a joint model by

Jointθ(m, e) = w>︸︷︷︸
projection to scalars

BERT
(3)
θ ([CLS] m [SEP] e︸ ︷︷ ︸

deep cross-attention

)[0]

Can be trained by optmizing log softmax1((m, e
(k))Kk=1) where

we set e(1) to be gold

I Significant improvement if the task requires some reading
comprehension (i.e., easy to get high top-K recall but hard to
get high accuracy). Can also be trained jointly (Lee et al., 2019)
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Span-Selection Model

I Often need to predict span (i, j) in passage p given question q
(many tasks can be reduced to QA)

q =When was Rutgers founded?

p =Rutgers University is a public land-grant research university based in New Brunswick,

New Jersey. Chartered on November 10, 1766 Rutgers was originally . . .

(i, j) =(17, 19)

I Convention: Prepend a special symbol and set i = j = 0 if no
answer can be found

I Simple span-selection model by conditional independence
assumption

pθ(i, j|p, q) = sθ(i|p, q)× tθ(j|p, q)

Reasonble given enough transformation on p, q to render i, j
conditionally independent
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Example: BERT-based NQ Model (Alberti et al., 2019)

I (Simplified) NQ Input: Question q, passages p1 . . . pn of a
Wikipedia article (assumed to contain an answer somewhere)

I For each (pk, q) define a distribution over (0, 1, . . . |pk|) by

sθ(·|p, q) = softmax( w>s︸︷︷︸
projection to scalars

BERT([CLS] pk [SEP] q︸ ︷︷ ︸
deep cross-attention

) [: |pk|+ 1]︸ ︷︷ ︸
normalize over passage positions

)

Similarly for qθ(·|p, q) using a separate BERT

I Model trained by cross-entropy loss, at test time predict span
with highest probability

I What if there are multiple gold spans in a passpage? Can
optimize marginal log likelihood log

∑
(i,j)∈S(p,q) pθ(i, j|p, q)

I Can marginalize over passages, different probabilistic
assumptions yield different results (Cheng et al., 2020)
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Open-Domain Question Answering
I Original SQuAD-style QA (Rajpurkar et al., 2016): Supplies (p, q)

where passage p contains an answer phrase to question q
I Can just train a span-selection model, no need to consult a KB

I Open-domain QA: Only supplies q, but assumes a KB of
passages p1 . . . pM (e.g., Wikipedia articles broken into
512-long text blocks)

I Typical pipeline approach
1. Use efficient score(q, p) to retrieve top-K passages: TFIDF,

BM25, dual encoder
2. Apply span-selection model (multi-paragraph version)

(Chen et al., 2017)
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Fact Checking
I Example: FEVER (Thorn et al., 2018)

I Dataset of 185k claims manually labed as supported (S),
refuted (R), or neutral (N)

I S/R claims: Additionally have evidence sentences from
Wikipedia articles

I A claim might require multiple evidence sentences (from
multiple articles)

I Claim. Giada at Home was only available on DVD
I E1. “It first aired on October 18, 2008 on the Food Network.”

(2nd sent on Giada at Home)
I E2. “Food Network is an American basic cable and satellite

television channel.” (1st sent on Food Network)
I Label. R

I FEVER Accuracy. Prediction correct iff label correct AND
predicted evidence set (at most 5 sents) cover annotated
evidence set

I Only 32% with a simple pipeline: (1) Retrieve top-5 articles by
TFIDF, (2) Retrieve top-5 sentences by TFIDF, (3) Apply an
NLI model on evidence(concat)-claim pairs
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Retrieval-Based Dialogue

I Example: Wizard of Wikipedia (WoW) (Dinan et al., 2019)

I Dataset of 20k dialogues (total 200k utterances)
I Each dialogue focuses on one (or more) of > 1k diverse topics

(e.g., commuting, Gouda cheese, music festivals, podcasts,
bowling)

I Assymetric agents: Wizard sees Wiki articles on that topic,
Apprentice does not (during annotation)

I Goal: Model Wizard

I At every turn, the system (1) selects a relevant sentence from
Wikipedia (93m sents) and (2) predicts an utterance
conditioning on that sentence

I Original paper: Candidate sentences c = {c1 . . . cK} from
top-7 articles (TFIDF using 1st and last two utterances)

I Retrieval model (nonparametric): Return training response r
with highest scoreθ(history, c, r)

I Generative model: Generate from a seq2seq model
conditioning on history and c

I Evaluation: Unigram F1, perplexity (against annotated data)
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Example from WoW

History

I Wizard: Obesity is a condition where excess body fat is very high

I Apprentice: That’s true, I think obesity is a big problem in the US right now.

I Wizard: Yes and the negative health effects can include mortality

I Apprentice: Definitely, it’s a big problem. Do you know how common obesity is

in the US right now?

I Wizard: 1 in 4 and the causes are varied from over eating to lack of activity and

of course genetics play a part

I Apprentice: Wow that’s crazy it’s so common. Are there any cures for obesity?

Gold response

I Wizard: You can try changes to diet and exercising to increase muscular gain.

I Wipepedia article: Obesity : Obesity is mostly preventable through a

combination of social changes and personal choices. Changes to diet and

exercising are the main treatments. Diet quality can be improved by . . .
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Relation Extraction and Slot Filling
I Relation extraction (RE)

I Task of identifying instances of relations (e.g.,
nationality(person, country)) in passages of natural text

I Predefined set of relation types R (e.g., educated-at,
occupation, etc., drawn from Wikidata)

I Annotation: Passage p, two spans (x, y) representing
predicate-argument, their relation r(x, y|p) ∈ R

I Pipeline approach: Find spans (e.g., by NER), train a relation
classifier

I Slot filling
I Input: r(x, ·|p) where r ∈ R, x is some entity in KB, p passage
I Output: String y such that r(x, y) is true based on p
I Can be solved as QA: educated-at(Einstein, ·|p) is asking

“Where did Einstein study?” with passage p, return answer
span (Levy et al., 2017)

I Open-domain slot filling
I System doesn’t get p, given r(x, ·) must retrieve passages from

which y can be extracted
I Analogous to open-domain QA
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Benchmarks for Knowledge-Intensive Language Tasks

I Example: KILT (Petroni et al., 2021)

I Wikipedia-based tasks a uniform framework

I Every example has an associated text span in Wikipedia
(“provenance”, whole article for EL)

I Main challenge: Different datasets used different versions of
Wikipedia dump, resolved by careful re-mapping

I Different datasets have different evaluation metrics: accuracy
(EL, fact checking, slot filling), exact match (QA), Rouge-L
(abstractive generation), unigram-F1 (WoW)

I “KILT score”: Only award points if the gold provenance is
ranked at the top by the system
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