
CS 533: Natural Language Processing

Copy Mechanism,
Relation-Aware Self-Attention,

Hidden Markov Models

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/29

Review: Conditional Language Models

I Language model (LM) conditioning on x = (x1 . . . xT)

pθ(y1 . . . yT ′ |x) =
T ′+1∏
t′=1

pθ(yt′ |x, y<t′)

I Learnable modules
I Encoder. encθ : VT → RT×d contextualizes source token

embeddings of x (e.g., BiLSTM, Transformer encoder)
I Decoder. decθ : RT×d × Vt

′−1 → RV computes logits for
next word given source encodings and target history via
attention to source encodings (e.g., recurrent, Transformer
decoder)

I Encoder-decoder/sequence-to-sequence (seq2seq): Train
encoder & decoder jointly to optimize a function of

pθ(yt′ |x, y<t′) = softmaxyt′ (decθ(encθ(x), y<t′))

Karl Stratos CS 533: Natural Language Processing 2/29

Review: Stepwise Cross-Attention

I Example: RNN decoder with input feeding

A B C

Encoder

0

RNN

+ + =

1 2

I Learns to attend to right source positions, without
supervision. Visualization for translating English to French
(Bahdanau et al., 2016)

I Transformer decoder (Vaswani et al., 2017): No recurrent or
convolutional layers, entirely based on attention with a
position-shared feedforward

Karl Stratos CS 533: Natural Language Processing 3/29

The Unknown Word Problem

I Target text may contain rare words like
I Proper names: Lausanne, Cesar, Guilaume, . . .
I Numbers/values: 103, 95, 42, 3.141592, 3.141593, . . .

I Decoder needs these in target vocab V to generate at all!
I Note target vocab may be distinct from source vocab Vsrc in

general (e.g., translation)

I Brute-force: Include all word types in V? Not practical
I By Zipf’s Law, most words will have extremely low probabilities
I Never enough: Guilaumé? 3.141594? Not seen in training data

I Simple/naive approach: Threshold vocab by frequency
I Keep top-k (e.g., k = 100000) most frequent types in V and

replace all other types (“OOV”) with special token 〈unk〉 in
training

I Problem: Model predicts 〈unk〉 at test time (e.g., “〈unk〉 and
〈unk〉 have a blue car in 〈unk〉”).

I Can be postprocessed, but can we do better?

Karl Stratos CS 533: Natural Language Processing 4/29

Copy Mechanism

I Idea: Unknown target words likely to be copied from source
sentence somewhere

I Example: translation (Gulcehre et al., 2016)

I Example: data-to-text generation (Wiseman et al., 2017)

TEAM WIN LOSS PTS
Heat 11 12 103
Hawk 7 15 95

The Atlanta Hawks defeated
the Miami Heat, 103-95, at
Philips Arena on Wednesday. . .

I Approaches: Data pre-processing, attention-based
I Non-copy approaches

I Subword tokenization (e.g., BPE): No “unknown” words, but
sequences longer and may also benefit from copy mechanism

I Scaling softmax to accommodate bigger V (e.g., hierarchical
softmax, sampling-based methods)

Karl Stratos CS 533: Natural Language Processing 5/29

Data Pre-Processing Approach (Luong et al., 2015)

I Original data: Apply an unsupervised aligner to get alignments

I The ecotax portico in Pont-de-Buis
I Le portique écotaxe de Pont-de-Buis

I Conventional pre-processing

I The 〈unk〉 portico in 〈unk〉
I Le 〈unk〉 〈unk〉 de 〈unk〉

I Copyable Model pre-processing

I The 〈unk〉1 portico in 〈unk〉2
I Le 〈unk〉0 〈unk〉1 de 〈unk〉2

I Positional All Model pre-processing

I The 〈unk〉 portico in 〈unk〉
I Le p0 〈unk〉 p−1 〈unk〉 p1 de p0 〈unk〉 p−1

I Positional Unknown Model pre-processing

I The 〈unk〉 portico in 〈unk〉
I Le 〈unk〉1 〈unk〉−1 de 〈unk〉1

Karl Stratos CS 533: Natural Language Processing 6/29

Attention-Based Approaches

I Data pre-processing approach: Simple and effective (1-2
points improvement over strong NMT baselines)

I Limitations
I Requires an external word aligner in the pipeline
I Fixed-size window (〈unk〉−7 . . . 〈unk〉7), can’t handle copy

from far away in source sequence

I Idea: Make the model learn when and what to copy without
supervision, by attention

I Pointer networks (Vinyals et al., 2015): Only what to copy

I CopyNet (Gu et al., 2016): Both when and what to copy, applied
on summarization

I Concurrent work by Gulcehre et al., 2016: Different modeling
details, applied on both translation and summarization

I When to copy: Modeled by a “switching network” (learned
jointly)

Karl Stratos CS 533: Natural Language Processing 7/29

Conditional LM with a Copy Mechanism

I Single training example now consists of

x = (x1 . . . xT) y = (y1 . . . yT ′) z = (z1 . . . zT ′)

where zt′ ∈ {0, 1} is 1 iff yt′ is copied from x

I Assume for now that z is observed
I Just decide to set zt′ = 1 if yt′ appears in x somewhere.

I Conditional LM with a copy mechanism

pθ(y, z|x) =
T ′+1∏
t′=1

pθ(yt′ , zt′ |x, y<t′ , z<t′)

I Further decomposition by the chain rule

pθ(yt, zt′ |x, y<t′ , z<t′) = pθ(zt′ |x, y<t′ , z<t′)︸ ︷︷ ︸
“switching network”

×pθ(yt′ |x, y<t′ , z≤t′)

Karl Stratos CS 533: Natural Language Processing 8/29

Parameterization

I Switching network

pθ(1|x, y<t′ , z<t′) = σ (fθ(x, y<t′ , z<t′))

pθ(0|x, y<t′ , z<t′) = 1− σ (fθ(x, y<t′ , z<t′))

fθ(x, y<t′ , z<t′) ∈ R computed from current state (e.g., ht if
RNN, current embedding if Transformer)

I If zt′ = 1, “dynamic LM” with vocab {w ∈ x}

pθ(yt′ = w|x, y<t′ , z≤t′) =
T∑

t=1: xt=w

Aθt,t′︸︷︷︸
attention from t′-th target to t-th source

I If zt′ = 0, vocab V

pθ(yt′ = w|x, y<t′ , z≤t′) = pθ(yt′ = w|x, y<t′)︸ ︷︷ ︸
usual next word probability

Karl Stratos CS 533: Natural Language Processing 9/29

Supervised vs Unsupervised Loss

I Supervised training: Maximize log pθ(y, z|x) in training data

I Inference: At each step t′, consider all

pθ(w, 1|x, y<t′ , z<t′) ∀w ∈ V
pθ(w, 0|x, y<t′ , z<t′) ∀w ∈ x

I Unsupervised training: Maximize log pθ(y|x) in training data

pθ(yt′ |x, y<t′) =
∑

z∈{0,1}
pθ(yt′ , z|x, y<t′)

= σ (fθ(x, y<t′ , z<t′))

 T∑
t=1: xt=yt′

Aθt,t′

+

(1− σ (fθ(x, y<t′ , z<t′)))pθ(yt′ = w|x, y<t′)

Switching network fθ trained without supervision, inference remains
the same

Karl Stratos CS 533: Natural Language Processing 10/29

Illustration

Image credit: See et al. (2017)

Karl Stratos CS 533: Natural Language Processing 11/29

Self-Attention as a Fully Connected Directed Graph

I Self-attention viewed as a fully connected directed graph

I Natural generalization: Incorporate edge types in the model

x1

x2

x3

x4

x1

x2

x3

x4

τ1,1

τ1,2

τ2,1

τ2,2τ1,3τ3,1

τ3,3

τ2,3

τ3,2τ2,4

τ4,2

τ4,4

τ3,4

τ4,3

τ4,1

τ1,4

I Example edge types: Relative positions, relation between table
cells (e.g., cell-column, cell-row)

Karl Stratos CS 533: Natural Language Processing 12/29

Relation-Aware Self-Attention (Shaw et al., 2018)

I Extra parameters in the multi-head attention module
I bKτ ∈ Rd/H for every relation type τ
I bVτ ∈ Rd/H for every relation type τ

I Self-attention weight from xt′ to xt with relation τt′,t under
head h

lht′,t =
qht′ · (kht + bKτt′,t)

d/H

Probabilities: (αht′,1 . . . α
h
t′,T) = softmax(lht′,1 . . . l

h
t′,T)

I Answer value

aht′ =

T∑
t=1

αht,t′
(
vht + bVτt′,t

)
I Relation bias is shared across all heads. Efficient batch

computation still possible by construction
Karl Stratos CS 533: Natural Language Processing 13/29

Applications of Relation-Aware Self-Attention
I Relative position encoding (Shaw et al., 2018)

I Original Transformer: Add constant (or learnable) absolute
position embeddings at input vectors

I Now: For some k (e.g., k = 8), use 2k + 1 relation types
representing local distances

I Tokens beyond window clipped to k or −k
I Can entirely replace additive position embeddings, even

modest improvement
I Value bias bVτ found unnecessary given key bias bTτ (for MT)

I Relation between tokens in structured input (Müller et al., 2019)

I Task: question answering from a table (represented as a flat
sequence of words)

I Idea: Distinguish relations between table cells, row header,
column header, question, etc.

Karl Stratos CS 533: Natural Language Processing 14/29

Sequence Labeling/Tagging

I Switching gears, we’ll consider the sequence labeling (aka.
tagging) problem.

I Task: Given sentence x1 . . . xT ∈ V, output a correct label
sequence y1 . . . yT ∈ Y

I Many applications: part-of-speech tagging, named-entity
recognition

I This is a structured prediction problem: Output space is YT
possible label sequences

I Why not just frame it as seq2seq?
I Seq2seq needs a lot of data, and is typically very challenging

to train well (lots of engineering efforts)
I In contrast, we can exploit conditional independence

assumptions to derive exact and effective algorithms
I In tagging, exact inference called “Viterbi”, exact

marginalization called “forward”. Both dynamic programming

Karl Stratos CS 533: Natural Language Processing 15/29

Example: Part-Of-Speech (POS) Tagging

I Task. Given a sentence, output a sequence of POS tags.

I Ambiguity. A word can have many possible POS tags.

the/DT man/NN saw/VBD the/DT cut/NN

the/DT saw/NN cut/VBD the/DT man/NN

I Evaluation. Per-position accuracy (can consider others, like
sentence-level accuracy)

I Definition of POS tags in Penn Treebank (English)

Other definitions: universal tagset (12 tags, language
agnostic)

Karl Stratos CS 533: Natural Language Processing 16/29

Example: Named-Entity Recognition (NER)

I Task. Given a sentence, identify and label all spans that are
“named entities”

. . .

PER

John Smith works at

ORG

New York Times . . .

I Reduction to tagging. “Linearize” labeled spans into a label
sequence using “BIO” scheme

John/B-PER Smith/I-PER works/O at/O New/B-ORG

York/I-ORG Times/I-ORG

Number of tagging labels: 2× number of entity types + 1

CoNLL 2003 dataset, 4 entity

types (PER, ORG, LOC, MISC)

Karl Stratos CS 533: Natural Language Processing 17/29

NER Evaluation

I Most words are tagged as O (not an entity), so accuracy is
meaningless (vacuously high by predicting O always)

I Better metric: precision/recall/F1

I Per-entity F1 score (harmonic mean of precision and recall)

F1(e) =
2p(e)r(e)

p(e) + r(e)

p(e) =
tp(e)

tp(e) + fp(e)
× 100 r(e) =

tp(e)

tp(e) + fn(e)
× 100

I Global F1 score: Single performance number

F1 =
2pr

p+ r

p =
tp

tp+ fp
× 100 r =

tp

tp+ fn
× 100

Karl Stratos CS 533: Natural Language Processing 18/29

Generative Probabilistic Tagger
I Model defines a joint distribution pθ(x1 . . . xT , y1 . . . yT) over

any pairs of sentence and a label sequence.
I Can generate x1 . . . xT , although we will not use the tagger for

generation

I By the chain rule

pθ(x1 . . . xT , y1 . . . yT)

= pθ(y1|y0)× pθ(x1|y0 y1)× pθ(y2|x1, y0 y1)× pθ(x2|x1, y0 y1 y2)
· · · × pθ(yT |x<T , y<T)× pθ(xT |x<T , y≤T)× pθ(y∗|x≤T , y≤T)

Thus only need to model transition probabilities
pθ(yt|x<t, y<t) and emission probabilities pθ(xt|x<t, y≤t)

y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

Karl Stratos CS 533: Natural Language Processing 19/29

Marginalization and Inference

I Two central calculations in structured prediction

I Marginalization. What is the marginal probability of
x1 . . . xT under the model?∑

y1...yT∈YT
pθ(x1 . . . xT , y1 . . . yT)

I Inference. Given x1 . . . xT , what is the most probable
y1 . . . yT ∈ YT under the model?

argmax
y1...yT∈YT

pθ(y1 . . . yT | x1 . . . xT)

= argmax
y1...yT∈YT

pθ(x1 . . . xT , y1 . . . yT)

I Generally intractable, that is we must exhaustively enumerate
|Y|T tag sequences (exponential in length).

Karl Stratos CS 533: Natural Language Processing 20/29

(First-Order) Markov Assumption
I We define the model as

pθ(yt|x<t, y<t) = pθ(yt|x<t, yt−1)
pθ(xt|x<t, y≤t) = pθ(xt|x<t, yt)

I Transition probability: Current label conditionally independent
of all past labels given only previous label

I Emission probability: Current word conditionally independent
of all past labels given only current label

y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

I Is this a reasonable assumption for tagging? (Note that even
if the assumption is false we can still use this model on any
data.)

I But now marginalization and inference can be done exactly in
time linear (rather than exponential) in sequence length.

Karl Stratos CS 533: Natural Language Processing 21/29

Forward Algorithm for Exact Marginalization

I Now no need to consider all |Y|T candidates because of the
Markov assumptions

I This is a dynamic programming (DP) algorithm. Given
x1 . . . xT , the DP table we fill out is π ∈ RT×|Y| where

π(t, y) =
∑

y1...yt∈Yt: yt=y

pθ(x1 . . . xt, y1 . . . yt)

I Output
∑

y∈Y π(T, y)× pθ(y∗|x≤T , y) as the marginal
probability of x1 . . . xT

I We will see that computing each π(t, y) will only take O(|Y|)
time, hence the total runtime is O(T |Y|2).

I Base case is easy: Compute for all y ∈ Y

π(1, y) = pθ(y|y0)× pθ(x1|y)

Karl Stratos CS 533: Natural Language Processing 22/29

Forward Algorithm: Main Body (t > 1)

π(t, y′) =
∑

y≤t: yt=y′

pθ(x≤t, y≤t)

=
∑
y<t

pθ(x≤t, y<t y
′)

=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, y<t)× pθ(xt|x<t, y<t, y′)

∗
=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, yt−1)× pθ(xt|x<t, y′)

=
∑
y

∑
y<t−1

pθ(x<t, y<t−1 y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

=
∑
y

π(t− 1, y)︸ ︷︷ ︸
already computed

×pθ(y′|x<t, y)× pθ(xt|x<t, y′)

Karl Stratos CS 533: Natural Language Processing 23/29

Forward Algorithm: Main Body (t > 1)

π(t, y′) =
∑

y≤t: yt=y′

pθ(x≤t, y≤t)

=
∑
y<t

pθ(x≤t, y<t y
′)

=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, y<t)× pθ(xt|x<t, y<t, y′)

∗
=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, yt−1)× pθ(xt|x<t, y′)

=
∑
y

∑
y<t−1

pθ(x<t, y<t−1 y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

=
∑
y

π(t− 1, y)︸ ︷︷ ︸
already computed

×pθ(y′|x<t, y)× pθ(xt|x<t, y′)

Karl Stratos CS 533: Natural Language Processing 23/29

Forward Algorithm: Main Body (t > 1)

π(t, y′) =
∑

y≤t: yt=y′

pθ(x≤t, y≤t)

=
∑
y<t

pθ(x≤t, y<t y
′)

=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, y<t)× pθ(xt|x<t, y<t, y′)

∗
=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, yt−1)× pθ(xt|x<t, y′)

=
∑
y

∑
y<t−1

pθ(x<t, y<t−1 y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

=
∑
y

π(t− 1, y)︸ ︷︷ ︸
already computed

×pθ(y′|x<t, y)× pθ(xt|x<t, y′)

Karl Stratos CS 533: Natural Language Processing 23/29

Forward Algorithm: Main Body (t > 1)

π(t, y′) =
∑

y≤t: yt=y′

pθ(x≤t, y≤t)

=
∑
y<t

pθ(x≤t, y<t y
′)

=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, y<t)× pθ(xt|x<t, y<t, y′)

∗
=
∑
y<t

pθ(x<t, y<t)× pθ(y′|x<t, yt−1)× pθ(xt|x<t, y′)

=
∑
y

∑
y<t−1

pθ(x<t, y<t−1 y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

=
∑
y

π(t− 1, y)︸ ︷︷ ︸
already computed

×pθ(y′|x<t, y)× pθ(xt|x<t, y′)

Karl Stratos CS 533: Natural Language Processing 23/29

Viterbi Algorithm for Exact Inference

I Same idea: No need to consider all |Y|T candidates because
of the Markov assumptions

I Given x1 . . . xT , the DP table we fill out is π ∈ RT×|Y| where

π(t, y) = max
y1...yt∈Yt: yt=y

pθ(x1 . . . xt, y1 . . . yt)

I Exactly the same as forward if we switch sum with max

π(1, y) = pθ(y|y0)× pθ(x1|y)
π(t, y′) = max

y
π(t− 1, y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

I But this only gives us the joint probability of x1 . . . xT and its
most likely tag sequence. How do we extract the actual tag
sequence?

Karl Stratos CS 533: Natural Language Processing 24/29

Backtracking for Viterbi

I Keep an additional chart to record the path:

β(t, y′) = argmax
y∈Y

π(t− 1, y)× pθ(y′|x<t, y)× pθ(xt|x<t, y′)

for t = 2 . . . T .

I After running Viterbi, we can “backtrack”

y∗T = argmax
y∈Y

π(T , y)× pθ(y∗|x≤T , y)

y∗T−1 = β(T, y∗T)

...

y∗1 = β(2, y∗2)

and return y∗1 . . . y
∗
T .

Karl Stratos CS 533: Natural Language Processing 25/29

Other Details

I In practice, we always operate in log space for numerical
stability. The DP tables will store log probabilities, e.g., in
forward

π(1, y) = log pθ(y|y0) + log pθ(x1|y)
π(t, y′) = logsumexp

y

(
π(t− 1, y) + log pθ(y

′|x<t, y)

+ log pθ(xt|x<t, y′)
)

where logsumexpy f(y) = log
∑

y exp(f(y)) is the usual
numerically stable calculation for log space

I Debugging. Debugging is crucial, the first DP
implementation is almost certainly incorrect.

I Construct a small model randomly (e.g., with |Y| = 5)
I Generate a short sequence (e.g., x1 . . . x7) and compute

marginalization and inference exactly by brute-force
I Check if the output of forward/Viterbi matches with

brute-force
Karl Stratos CS 533: Natural Language Processing 26/29

The Hidden Markov Model

I Further Markov assumption on observation generation yields
hidden Markov model (HMM)

pθ(yt|x<t, y<t) = tθ(yt|yt−1)
pθ(xt|x<t, y≤t) = oθ(xt|yt)

I Simplest form of labeled sequence generation
y1y0

x1

y2

x2

y3

x3

y4

x4

y∗

pθ(x1 . . . xT , y1 . . . yT) =

T∏
t=1

tθ(yt|yt−1)︸ ︷︷ ︸
transition prob

× oθ(xt|yt)︸ ︷︷ ︸
emission prob

×tθ(y∗|yT)

I Central model in NLP and machine learning: Tagging English
text with a probabilistic model (Merialdo, 1994)

I Underlying tag sequence often unobserved (hence “hidden”)
Karl Stratos CS 533: Natural Language Processing 27/29

Forward Algorithm for HMMs in Matrix Form

I Organize HMM probabilities in matrix form
I Emission matrix: O ∈ R|V|×|Y| where Ox,y = oθ(x|y)
I Transition matrix: T ∈ R|Y|×|Y| where Ty′,y = tθ(y

′|y)
I Forward algorithm

pθ(x1 . . . xT) = τ>∞︸︷︷︸
1×|Y|

diag(OxT)︸ ︷︷ ︸
|Y|×|Y|

T︸︷︷︸
|Y|×|Y|

· · · diag(Ox1)︸ ︷︷ ︸
|Y|×|Y|

τ0︸︷︷︸
|Y|×1

Ox ∈ R|Y| is row x of O, [τ0]y = tθ(y|y0), [τ∞]y = tθ(y∗|y)
I Compact/insightful view of stepwise marginalization in

dynamic programming as matrix-matrix product∑
y∈Y

π(t− 1, y)× tθ(y′|y)× oθ(xt|y′)

Karl Stratos CS 533: Natural Language Processing 28/29

Learning HMMs
I Supervised. If y1 . . . yT observed, just maximize

log pθ(x1 . . . xT , y1 . . . yT) =

T∑
t=1

log tθ(yt|yt−1) + log oθ(xt|yt)

Pre-neural: Parameters are raw probabilities, closed-form MLE
by constrained optimization

t(y′|y) = count(y, y′)∑
y′∈Y count(y, y

′)
o(x|y) = count(x, y)∑

x∈V count(x, y)

(i.e., “training” means counting word/tag bigrams off of
labeled sequences). If parametric, can do gradient ascent

I Unsupervised. If y1 . . . yT unobserved, can still maximize
marginal probability of x1 . . . xT

log pθ(x1 . . . xT) = log
∑
y1...yT

pθ(x1 . . . xT , y1 . . . yT)︸ ︷︷ ︸
computable with forward alg.

Karl Stratos CS 533: Natural Language Processing 29/29

