
CS 533: Natural Language Processing

More Pretrained Transformers,
Latent-Variable Generative Models

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/25

Review: Pretrained Transformers

I Language models with Transformer
architecture

I Unsupervised transfer learning (aka.
“self-supervised” learning)

1. Pretrain on a ton of raw text
2. Finetune on a downstream task with

modest supervision

I Enormous improvement over baselines trained
from scratch on many NLU tasks

I Landmark: BERT (Devlin et al., 2019)

I Masked language modeling (MLM)
I “this is too [MASK] to fit” → “big”
I Amenable to the full force of deep

bidirectional self-attention in
Transformer encoders

Karl Stratos CS 533: Natural Language Processing 2/25

Some BERT Extensions

I RoBERTa (Liu et al., 2019)

I A Robustly optimized BERT pretraining approach
I Same as BERT but much more thoroughly optimized
I Dynamic masking, no next sentence prediction (i.e., only MLM

loss), BPE instead of wordpiece tokenization (thus language
agnostic), trained with larger batch sizes for longer on more
data

I Very significant improvement, e.g., GLUE score
I BERT (340m parameters): 80.5
I RoBERTa (355m parameters): 88.1
I Human: 87.1

I ALBERT (Lan et al., 2019)

I A Lite BERT
I Reduce number of parameters by: (1) Token embedding

dimension bottleneck (� hidden dimension), (2) Tying
Transformer parameters across layers

I Catch: The model is smaller but slower! Larger hidden dim
I GLUE score 89.4 with ensembling

Karl Stratos CS 533: Natural Language Processing 3/25

Pretraining Encoder-Decoder Models

I BERT only pretrains a Transformer encoder
I Limited to simple downstream tasks like text classification,

tagging, span finding

I Critically, cannot be directly used for text generation

I How can we pretrain a Transformer decoder?
I Can certainly just train it as a standard left-to-right LM (e.g.,

GPTs). But then no deep bidirectional self-attention
I Is there a way to pretrain encoder & decoder jointly and get

the best of both worlds?

Karl Stratos CS 533: Natural Language Processing 4/25

BART (Lewis et al., 2019)

I Pronounced bahrt (vs. burt for BERT)
I Transformer encoder-decoder model trained as a denoising

autoencoder
I Input. Corrupt(text)
I Output. text

I Special cases
I Corrupt(text) = ∅: ≈GPT
I Corrupt(text) = MaskTokens(text): ≈BERT
I Corrupt(text) = Permute(text): ≈XLNet (Yang et al., 2019)

I Great deal of flexibility in noise. Example: “text infilling”, a
span-level generalization of MLM

I Span lengths sampled from Poisson(λ = 3), entire span
replaced by single [MASK], e.g.,

Corrupt(There Is No Plan to Stop Chemical Weapons in Syria)

= There Is No Plan to [MASK] in Syria

I Model must learn to infer span lengths in denoising
Karl Stratos CS 533: Natural Language Processing 5/25

BART Pretraining

I Best of both worlds

1. Encoder: Deep bidirectional self-attention over corrupted text
2. Decoder: Autoregressive prediction of uncorrputed text

I Explored a vareity of noise schemes

I Token/span masking is again found to be crucial
I Final choice: Text infilling + sentence-level shuffling
I No single noise best for all: Performance highly

task-dependent. E.g., for perplexity null corruption (plain
left-to-right LM) sometimes best.

Karl Stratos CS 533: Natural Language Processing 6/25

BART Finetuning
I Text-level classification

1. Feed input text to encoder (if sentence pair, concatentated)
2. Feed the same text to decoder conditioning on the encoding
3. Use the last top hidden state of the decoder to classify

I Token-level classification (e.q., SQuAD-style QA, tagging):
Same as text-level classification, only use top decoder hidden
states as contextual token embeddings

I Conditional text generation: Directly finetune
I MT: Add a few randomly initialized encoder layers at input.

Karl Stratos CS 533: Natural Language Processing 7/25

Details of BART

I Number of parameters 406m (vs. 355m of RoBERTa which
has 24 encoder layers)

I 12 Transformer encoder/decoder layers, dimension 1024
I GPT-2 style BPE tokenization: Shared embs E ∈ R50265×1024

I Pretraining
I Noise: Text infilling + sentence-level shuffling. Input is a

document. 30% tokens masked, sentences shuffled.
I Closely follows RoBERTa: Same pretraining data (160gb of

news, books, stories, web), 500k updates w/ batch size 8000

I Classification result: Matches RoBERTa
I BART’s generation capabilities don’t come at the expense of

classification performance

I At the same time, significant improvement on conditional text
generation

I Abstractive summarization (R1): CNN/DailyMail 42.13 →
44.16, XSum 38.81 → 45.14

I MT (BLEU): WMT16 Ro-En 36.80 → 37.96

Karl Stratos CS 533: Natural Language Processing 8/25

T5 (Raffel et al., 2020)

I Text-To-Text Transfer Transformer
I Concurrent work with BART on pretraining Transformer

encoder-decoder model
I Also based on large-scale denoising autoencoding, using a

carefully cleaned version of the Common Crawl web scrapes
I Additionally pretrained on a diverse set of supervised tasks

framed as seq2seq problems

I Complementary insights confirming BART’s findings
I Denoising encoder-decoder more effective than decoder LM
I For noise, token masking crucial

I One of the very top performers on GLUE/SuperGLUE
I 11 billion parameters: 90.3 GLUE, 89.3 SuperGLUE

Karl Stratos CS 533: Natural Language Processing 9/25

Multilingual/Domain-Specific Pretrained Transformers
I Multilingual BERT: Released along with the original BERT

I Same as BERT but trained on a union of Wikipedia dumps in
104 languages

I Enables zero-shot cross-lingual model transfer (Pires et al., 2019):
Finetune in language A, evaluate in language B

I Multilingual BART (mBART) (Liu et al., 2020)

I Same as BART but trained on 25 languages extracted from
Common Crawl with language identifier

I Directly transferrable to MT tasks, huge improvement (esp for
low-resource languages)

I Domain specific BERTs: BioBERT (Lee et al., 2019) for
biomedical text, SciBERT (AI2) for scientific text

Karl Stratos CS 533: Natural Language Processing 10/25

The Model Size Problem
I Pretrained LMs growing rapidly in size

(Image Credit: TensorFlow Blog)

I Impossible to train except industry, difficult to use
I Focus of NLP shifted too much on sheer engineering (brainless

usage of larger models)
I Also bad for the environment: Training a BERT on GPU emits

as much CO2 as a trans-American flight (Strubell et al., 2019)
Karl Stratos CS 533: Natural Language Processing 11/25

Model Compression/Knowledge Distillation (KD)

I KD: Train a big “teacher” model pteacher, learn a small
“student” model pθ by minimizing

J(θ) = − 1

N

N∑
i=1

∑
y∈Y

pteacher(y|xi) log pθ(y|xi)

I Form of regularization, in particular label smoothing
I If pteacher(yi|xi) = 1 then back to usual cross entropy. Can be

controlled by softmax temperature (Hinton et al., 2015)

I Big models have capacity to induce broader patterns, make
small models mimic rather than figure out on their own

I Example: DistilBERT (Sanh et al., 2020)

I Teacher: BERT-base (110m). Student: BERT-base with half
of layers removed (67m)

I 40% smaller, 60% faster, GLUE score down by 79.5 → 77.0

I Can also sample from teacher (e.g., if y is a sequence)
I KD: Use teacher predictions not gold labels (Kim and Rush, 2016)

Karl Stratos CS 533: Natural Language Processing 12/25

What Does a Pretrained LM Know?

I Probing. Freeze pretrained model, train a classifier on top for
simplified linguistic tasks (POS tagging, NER, semantic role
labeling, etc.)

I The more it “contains” linguistic knowledge, the better
probing performance

I Easily solved even with small-scale pretraining

I In contrast, NLU tasks require billions of pretraining tokens
before working

(Tenney et al., 2019) (Zhang et al., 2020)

Karl Stratos CS 533: Natural Language Processing 13/25

Introducing Latent Variables in Generative Models

I Generative models (e.g., LMs) define pθ(x)
I The only random variable is observation x

I Idea: Introduce additional variable z and explicitly model an
unseen generative process

I We believe the process to be true (or at least useful for
something), even though we don’t observe it

Observed data

Latent process
that generates
observed data

(Original Image: 4edges/Wikimedia Commons)

Karl Stratos CS 533: Natural Language Processing 14/25

Latent-Variable Generative Models (LVGMs)

I pθ defining a joint distribution over observation x ∈ X and
latent variable z ∈ Z

pθ(x, z) = κθ(x|z)︸ ︷︷ ︸
conditional likelihood

× πθ(z)︸ ︷︷ ︸
prior

I Very general definition
I Can be discrete, continuous, or mixed
I x can be structured, z can be structured, or both

I Why introduce latent variables?

1. Clear generative story: Sample z ∼ πθ(z), then x ∼ κθ(·|z)
2. Marginal observation distribution can be more expressive
3. Latent variables can be useful: Controllable generation (i.e.,

change z to get x we want), z natural representation of x

Karl Stratos CS 533: Natural Language Processing 15/25

Marginal Observation Distribution
I LVGM defines a marginal distribution mθ over X

I If z is discrete: mθ(x) =
∑
z∈Z pθ(x, z)

I If z is continuous: mθ(x) =
∫
z∈Z pθ(x, z)dz

I If z is mixed: sum/integrate out appropriate dimensions

I mθ can express a larger family of distributions

I Example: Bimodal distribution over X = R cannot be
expressed by any single Gaussian N (µ, σ2)

I But can be expressed by a mixture of two Gaussians:

mθ(x) = π1N (µ1, σ
2
1)(x) + π2N (µ2, σ

2
2)(x)

Discrete latent variable Z = {1, 2}
Karl Stratos CS 533: Natural Language Processing 16/25

Better Explanation of Data

I Suppose iid samples from unknown pop over {a, b}10 look like

x(1) = (a, a, a, a, a, a, a, a, a, a) x(2) = (b, b, b, b, b, b, b, b, b, b)

x(3) = (a, a, a, a, a, a, a, a, a, a) x(4) = (b, b, b, b, b, b, b, b, b, b)

x(5) = (a, a, a, a, a, a, a, a, a, a) x(6) = (b, b, b, b, b, b, b, b, b, b)

I Bag-of-words model pθ(x) =
∏10
j=1 pθ(xj)?

I The model’s independence assumption is clearly wrong!
I Poor data fit: At most pθ(x

(i)) = 2−10 < 0.001 for each i

I LVGM mθ(x) =
∑

z∈{1,2} πθ(z)×
∏10
j=1 κθ(xj |z)

I The model makes the right assumption (draw a latent “topic”
z and draw observation conditioned on z).

I Can achieve mθ(x
(i)) = 2−1 for each i with only twice more

parameters
I Also likely to generalize better (i.e., higher log liklihood of

future samples)

Karl Stratos CS 533: Natural Language Processing 17/25

Example LVGMs

I HMMs: z ∈ ZT (unobserved label sequence), x ∈ VT (sentence)

pθ(x, z) =

T+1∏
t=1

tθ(zt|zt−1)×
T∏
t=1

oθ(xt|zt)

I Gaussian LM: z ∈ Rd (“thought vector”), x ∈ VT (sentence)

pθ(x, z) = N (0d, Id×d)(z)×
T+1∏
t=1

pθ(xt|x<t, z)

I Document hashing: z ∈ {0, 1}d (“hash code”), x ∈ RV (TFIDF
document encoding)

pθ(x, z) =

d∏
j=1

Bernoulli(λj)(zj)×
V∏
k=1

pθ(xk|z)

Karl Stratos CS 533: Natural Language Processing 18/25

Marginal Log Likelihood

I Training objective: Maximize marginal log likelihood (MLL)

L(θ) = E
x∼pop

[logmθ(x)]

(Equivalent to cross entropy minimization, but convenient to
frame as maximization for later)

I Requires the ability to calculate marginal probability of x!

mθ(x) = Ez∼πθ [κθ(x|z)]

I Sometimes we can calculate it exactly (best scenario)
I z is discrete and Z is small: mθ(x) =

∑
z∈Z pθ(x, z) directly

computable
I pθ makes Markov assumptions: mθ(x) computable by dynamic

programming (e.g., forward algorithm for HMMs)

I In general, we need to approximate by sampling

Karl Stratos CS 533: Natural Language Processing 19/25

Variance Reduction by Importance Sampling

I Have an x ∈ X , would like to estimate Lx(θ) = logmθ(x)

I Naive scheme: Draw K iid samples z(1) . . . z(K) ∼ πθ and use
L̂Kx (θ) = (1/K)

∑K
k=1 log κθ(x|z(k))

I Unbiased: As K →∞ we have L̂Kx (θ)→ Lx(θ)
I Problem: High variance. What if κθ(x|z∗) = 1 for a single
z∗ ∈ Z but πθ(z

∗) is tiny?

I Reduce variance by introducing an inference network (aka.
approximate posterior) qφ(z|x) that tells us which z is
“important” for x

I For any choice of qφ (full support)

Lx(θ)
(1)
= log E

z∼qφ(·|x)

[
pθ(x, z)

qφ(z|x)

]
(2)

≥ E
z∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
(1) Importance sampling, (2) Jensen’s inequality (log is
concave)

Karl Stratos CS 533: Natural Language Processing 20/25

ELBO

I Evidence Lower Bound

ELBO(θ, φ) = E
x∼pop, z∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
≤ L(θ)

I A variational lower bound on MLL (“variational” means
optimization-based)

I We are learning three distributions
1. Prior πθ(z)
2. Conditional likelihood κθ(x|z)
3. Approximate posterior qφ(z|x): This is an “optimization

assistant”.

I In fact, the gap is precisely

L(θ)− ELBO(θ, φ) = DKL(qφ||ωθ)

where ωθ(z|x) = pθ(x,z)
mθ(x)

is the true posterior probability, thus

ELBO(θ, φ) = L(θ) ⇔ qφ(z|x) = ωθ(z|x) ∀x, z
Karl Stratos CS 533: Natural Language Processing 21/25

Exact Relationship Between ELBO and MLL

L(θ) = E
x∼pop

[logmθ(x)]

= E
x∼pop, z∼qφ(·|x)

[logmθ(x)]

= E
x∼pop, z∼qφ(·|x)

[
log

mθ(x)ωθ(z|x)qφ(z|x)
ωθ(z|x)qφ(z|x)

]
= E

x∼pop, z∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

ELBO(θ,φ)

+ E
x∼pop, z∼qφ(·|x)

[
log

qφ(z|x)
ωθ(z|x)

]
︸ ︷︷ ︸

DKL(qφ||ωθ)

Karl Stratos CS 533: Natural Language Processing 22/25

Variational Autoencoders (VAEs) (Kingma and Welling, 2014)

I VAE. Maximizing ELBO written as an autoencoding objective

ELBO(θ, φ) = E
x∼pop, z∼qφ(·|x)

[
log

κθ(x|z)πθ(z)
qφ(z|x)

]
= E
x∼pop, z∼qφ(·|x)

[log κθ(x|z)]︸ ︷︷ ︸
reconstruction

− E
x∼pop

[DKL(qφ(·|x)||πθ)]︸ ︷︷ ︸
regularization

z

πθ

x

pop

κθqφ

I Reconstruction term large if qφ(·|x)
encodes x into z well and κθ(·|z) decodes
z back to x well

I Regularization term small if qφ(·|x) ≈ πθ
in expectation

Karl Stratos CS 533: Natural Language Processing 23/25

Example: Gaussian VAE for Language Modeling

I Continuous latent space Z = Rd

I Observation space X = V∗ (i.e., all sentences)
I Model

I Prior: πθ = N (0d, Id×d) (no learnable parameters)
I Conditional likelihood: κθ(x|z) =

∏T+1
t=1 κθ(xt|x<t, z). This

can be any conditional word distribution that additionally
conditions on z ∈ Rd

I Inference network: qφ(z|x) = N (µφ(x),diag(σ
2
φ(x))) where[

µφ(x)
σ2φ(x)

]
= encφ(x)︸ ︷︷ ︸

any sentence encoder (e.g., LSTM last state)

∈ R2d

I The Gaussian parameterization enables a particularly effective
estimation of ELBO

I KL between Gaussians: Closed form
I Differentiable sampling by reparameterization trick:
z ∼ N (µ, σ2)⇔ z = µ+ σ · ε where ε ∼ N (0, 1)

Karl Stratos CS 533: Natural Language Processing 24/25

Example: Gaussian VAE for Language Modeling (Cont.)

I ELBO for a single sentence x for clarity

I KL term:

DKL(qφ(·|x)||πθ) = DKL(N (µφ(x), diag(σ
2
φ(x)))||N (0d, Id×d))

=
1

2

(
d∑
i=1

[σ2φ(x)]i + [µφ(x)]
2
i − 1− log[σ2φ(x)]i

)

I Reconstruction term: Single-sample estimation,
ε ∼ N (0d, Id×d)

E
z∼qφ(·|x)

[log κθ(x|z)] ≈ log κθ(x|µφ(x) + σφ(x)� ε)︸ ︷︷ ︸
R̂x(θ,φ)

I Take a gradient step on βDKL(qφ(·|x)||πθ)− R̂x(θ, φ).

Karl Stratos CS 533: Natural Language Processing 25/25

