The scientific study of thought

~ The credo of this course ~

- In cognitive psychology, we study mental processes with the same method by which any scientist studies anything:
 - We observe the phenomena
 - We invent "mechanistic" models that we hope can explain what we observe
- Mental phenomena may seem more magical or mysterious than other phenomena, but they're not
 - They are the product of real physical mechanisms just like anything else!

- Dualism: the idea that mind and body are fundamentally different substances or processes
- vs. Monism or Materialism: The universe is made of only one kind of physical material ("atoms")

- "Everything reduces to physics"

 In Descartes' time, the ventricles (empty spaces) were thought to hold a nonmaterial substance responsible for higher thought processes.

de la Mettrie (1748):
"L'homme Machine"

 People are machines with mechanical systems plumbing, ventilation, temperature control, etc.

• Darwin (ca. 1850):

all biological structures are "devices" that are adapted to serve the survival of the organism

-> The mind as a machine

• The mind is a machine.

- What does this mean? What is a "machine?"

- A machine is a process consisting entirely of physical, material elements that affect each other causally—that is, via physical processes.
- In cognition, a mechanistic theory is one in which every element is understood in terms of the combination of simpler, stupider, elements.
 - In other words, we reduce things we DON'T understand to combinations of things we DO understand.

• A homonculus is an imaginary "man inside the head".

- A theory of cognition that relies on a homonculus—an intelligent component—is cheating!
 - It doesn't explain how the homunculus works
- In cognitive psychology, we seek to Banish the Homonculus!

In other words:

"No miracles allowed!"

Levels of explanation

- What is "weather"?
- Weather is a complex combination of air, water, temperature, motion, etc.
- Complex weather events (storms, fronts, etc.) are really combinations of these basic elements interacting causally.
- Complex mental events (thoughts, beliefs, ideas, memories, perceptions, etc.) are really complex combinations of basic elements interacting causally.
- Like weather, mental functions can be described at both levels of analysis (storms or air molecules).

Levels of explanation

Storms..... Air molecules Macroscopic......Microscopic

Holistic*.....Reductionist

[Cognitive Psychology.....Neuroscience]

*Holistic here means "concerning the big picture", not "alternative"

Explanation is reduction to simpler phenomena. —>In cognition, simpler means "stupider"

Banish the homonculus!

• Thought has patterns

...standard procedures that work because of their form, not their content

This suggests that thought can be standardized or converted into a mechanical process (->AI)

This also suggests that mental processes can be understood in mechanistic terms (->cognitive psychology)

• Understanding how the mind works mechanistically and building a mechanical mind are two sides of the same coin

Aristotle Syllogism: A chain of deductive reasoning

> Premise: All men are mortal Premise: Socrates is a man Conclusion: Socrates is mortal

> Premise: All ducks are green Premise: Josephine is a duck Conclusion: Josephine is green

The truth of the conclusion is logically certain based on the form of the argument, regardless of the content

The machinery of thought

Charles Babbage: (~1830) - Analytical Engine

Ada Lovelace (~1840)

- Thought patterns could be reduced to algorithms
- "Symbols" in the machine can correspond to ideas, musical patterns, etc. — not just numbers

George Boole: An Investigation of the Laws of Thought (1854)

Mathematical rules for reasoning with propositions

• In algebra, we can make statements about numbers that are true regardless of the specific values of the numbers:

x + x = 2x

• Boole proposed to do the same thing with propositions instead of numbers.

Propositions are ideas—statements that are true or false.

• This leads to a way of "calculating" with ideas instead of with numbers, called Propositional Calculus or Boolean algebra

Examples:

- A = "the sky is blue"
- B = "all men are mortal"
- We put propositions together with logical connectives:
- AAB: conjunction: "A is true AND B is true"
- AVB: disjunction: "A is true OR B is true (or both)"
- ~A : negation: "not A" = "A is not true"
- $A \rightarrow B$: implication/conditional/entailment:

"If A is true then B is true".

(Equivalent to \sim (A \wedge \sim B), which is equivalent to \sim A \vee B

not really a separate connective)

Negation ~A

Propositions with connectives make a "language" for expressing complex ideas, for example:

 \sim (((A \land B) \land C) \lor (A \land \sim D)) \land E

Or, you can prove conclusions from premises, like

Premise: $A \land B$ Premise: $A \rightarrow B$, i.e. $\neg A \lor B$ Conclusion: BPremise: $\neg B$ Conclusion: $\neg A$

The process is so automatic, maybe a machine could do it!

- Alan Turing proposed a hypothetical computing device, now called a Turing machine
- A Turing Machine has all the elements of a modern computer:
 - A method for data input and output
 - A general-purpose procedure for applying a sequence of logical operations to data

Alan Turing

- A distinction between software (the program or algorithm) and hardware (the machine)—making TMs programmable

• Modern computers are all essentially versions of Turing's general-purpose computing device