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Chapter 2
Categorization
Edward E. Smith

We are forever carving nature at its joints, dividing it into categories so
that we can make sense of the world. If we see a particular child pet a
particular dog at a particular time and a particular place, we code it as just
another instance of “children like dogs.” In doing this, we reduce a wealth
of particulars to a simple relation between the categories “children” and
“dogs” and free our mental capacities for other tasks.’

What exactly is a category? For now, let us take a category to be a class
of objects that we believe belong together. (The word believe is critical
here—we are dealing with the psychological sense of category, not the
logical sense that is sometimes captured by linguistic theories.) Our major
concern in this chapter is with the process by which people assign objects
to categories, but this concern requires that we first consider the nature
of categories. In section 2.1 we will analyze the nature of categories
and consider three characteristics of a class of objects that make it into

Preparation of this chapter was supported by U.S. Public Health Service grant MH 37208.
I thank Daniel Osherson for helpful comments on an earlier version.
1. Quotation marks are used throughout the chapter to indicate categories.
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a category. One characteristic is the similarity of the objects grouped
together, and in section 2.2 we will discuss alternative means for measuring
similarity. We will opt for a model in which the similarity of objects is
measured in terms of their features. In section 2.3 we will apply this model
to categorization tasks and see that it accounts for a variety of empirical
findings. In section 2.4 we will briefly look at some other issues in research
on categorization.

2.1 What Is a Category? Three Critical Characteristics

2.1.1 Classes and Categories

We take a category to be a class of objects that seem to belong together.
The critical part of this definition is “seem to belong together,” for there
are an indefinite number of classes of objects in the world whose members
do not seem to belong together. Thus, there is the class of all objects that
weigh an even number of grams (or an odd number of grams, or a prime
number of grams, etc.), the class of all things that are not green (or not
round, or not democratic, etc.), the class of all things that can be scraped or
worshiped (or tasted or mistrusted, or inflamed or envied, etc.), and so on.
In all these cases the class of objects has some property in common yet the
class is not treated as a category. What characteristics of a class give it the
status of categoryhood? Three characteristics are discussed in the following
sections.

2.1.2 Coding of Experience

Perhaps the most striking characteristic of a category is that we use it to
code experience. We may perceive some complex object as a kind of
“chair,” remember it as a “chair,” describe it to others as a chair, and
reason about it in the same way. Coding by category is fundamental to
mental life because it greatly reduces the demands on perceptual processes,
storage space, and reasoning processes, all of which are known to be
limited (see, for example, the discussion of short-term memories in chapter
1). This coding aspect of categories is presumably why human languages
contain simple terms for categories, such as figer, chair, and mother; that is,
frequently used codes are associated with brief descriptions.

Categories vary in the extent to which they are used as codes. Catego-
ries are often structured into a taxonomy—a hierarchy in which successive
levels refer to increasingly more specific objects—and categories at an
intermediate level are more likely to be used to code experience than
are categories at lower or higher levels (Rosch et al. 1976). Consider
the taxonomy for fruits. The category “fruit” would be at a high or
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superordinate level, “apple” would be at an intermediate or basic level, and
“McIntosh apple” would be at a relatively low or subordinate level. (For
objects, the basic level may be identified with the most abstract level that
is associated with a specific shape; the superordinate and subordinate levels
are simply the levels above and below the basic one.) Here, apple, which is
at the basic level, would be the preferred code, as witnessed by the facts
that (1) people overwhelmingly prefer to name a particular object apple
rather than fruit or McIntosh apple, and (2) they can decide that a particular
apple is an “apple” faster than they can decide that it is a “fruit” or a
“MclIntosh apple” (Rosch et al. 1976).

Note that this coding aspect of categories does not apply to classes
that are not categories. Thus, generally we do not code things as “objects
that weigh an even number of grams” or as “objects that can be scraped
or worshiped.” Nor are there simple terms in the language for these
classes.

2.1.3 Inductive Inferences

Whenever we use existing beliefs to generate new ones, we have drawn
an inference. An inference can be either “deductive,” in which case it is
impossible for the new belief to be false if the old ones are true, or “induc-
tive,” in which case it is improbable for the new belief to be false if the old
ones are true (see Skyrms 1986). There is an intimate relation between
inductive inferences and categories; namely, categorization of an object
licenses inductive inferences about that object.

An experimental demonstration used by Gelman and Markman (1986)
illustrates this relation. On each trial of the experiment subjects were
presented three pictures, where the third picture looked like one of the first
two but was from the same category as the other picture. For example, on
one trial the pictures were of a flamingo, a bat, and a blackbird, where the
blackbird resembled the bat. New information was given about the first
two pictures, then a question was asked about the third one. For example:
regarding the flamingo, subjects were told, “This bird’s heart has a right
aortic arch only”; regarding the bat, they were told, “This bat’s heart has a
left aortic arch only”; and regarding the blackbird, they were asked, “What
does this bird’s heart have?” Subjects responded with “right aortic arch
only” almost 90 percent of the time, thus basing their decision on common
category membership rather than physical similarity. More surprisingly,
when 4-year-old children were tested in the same paradigm (though with
simpler properties), they based their decision on category membership
almost 70 percent of the time. Very early on, we know that members of the
same category are likely to share many invisible properties even if they do
not resemble one another.



36  Smith

Different kinds of categories differ in the extent to which they support
inductive inferences. For one thing, basic and subordinate categories sup-
port more inferences than do superordinate categories (Rosch et al. 1976).
For example, people will attribute far more properties to an object classified
as an “apple” or a “McIntosh apple” than to an object classified as a “fruit.”
(There is little difference, though, between the number of inductive infer-
ences supported by basic categories and the number supported by subordi-
nate categories.)

Another distinction among categories that has implications for induction
is that between natural kinds like “tiger” and “daisy,” which deal with
naturally occurring species of flora and fauna, and artifact kinds like “chair”
and “shirt,” which deal with person-made objects (see, for example, Schwartz
1979). Natural kind categories seem to support more inductive inferences
about invisible properties than do artifact kinds. Having been told, for
example, that some chair has a particular nonvisible property—say, that is
has lignin all through it—we may be hesitant to conclude that another
chair has this property, at least compared to the ease with which we
generalize from a flamingo’s having a right-aortic-arch heart to another
bird's having such a heart (Gelman and O'Reilly 1988).

Categories in general support more inductive inferences than do classes
that are not categories. We draw more inferences, say, about “fruit” or
“furniture” than about “objects that weigh an even number of grams.”

2.1.4 Similarity

Another characteristic of many categories is that their members tend to be
physically similar to one another while being physically dissimilar from
members of contrasting categories. Of course, there are limits to this, as in
the earlier example where one bird was less similar to another bird than to
a bat. Still, in general we divide the world so as to maximize within-
category similarity while minimizing between-category similarity.

The extent to which this characteristic is manifest again depends on the
taxonomic level of the categories. At the superordinate level members of a
category need not resemble one another; instances of “fruit,” for example,
may share few physical properties (consider a raisin and a watermelon). At
the subordinate level members of a category closely resemble one another,
but they also resemble members of contrasting categories (two McIntosh
apples look very much alike, but they also resemble a Delicious apple). It is
primarily at the basic level that members of a category resemble one
another and look different from members of contrasting categories (two
apples look like each other yet differ from oranges or peaches).

As usual, this characteristic of categories seems not to apply to classes
that are not categories. On the average, there is little physical similarity
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among “objects that weigh an even number of grams,” or among “objects
that can be scraped or worshiped.”?

2.1.5 Relations among the Three Characteristics

Two questions arise about the relations among the three characteristics. (1)
Do they cohere; that is, do they pick out the same classes as categories? (2)
Do they give the same kind of information about concepts?

With regard to coherence, there is substantial convergence among the
three criteria, at least for basic categories. A basic category (“apple”)
is often used to code experience, affords numerous inductive inferences
(particularly if it is a natural kind category), and tends to maximize within-
category similarity while minimizing between-category similarity. For non-
basic categories, there is less convergence. Although a subordinate cate-
gory (“McIntosh apple”) may be used to code experience in some contexts,
the fact that it is rarely denoted by a single term suggests limits to
its coding potential; further, although a subordinate category supports
numerous inferences, it maximizes within-category similarity at the cost of
substantial between-category similarity. In contrast, although a superordi-
nate category (“fruit”) also may be used to code experience in some
contexts, it promotes few inductive inferences and clearly does not maxim-
ize within-category similarity.

With regard to the second question, the three characteristics seem to have
different natures. Similarity represents a guide to categorization, whereas
the other two characteristics generally reflect the consequences of categoriza-
tion. To the extent that members of a category are similar to one another
yet dissimilar from instances of other categories, we can decide whether or
not a novel object belongs to the category by assessing its similarity to
known category members (versus its dissimilarity from known nonmem-
bers). Once this categorization is made, we can code the object in terms of
the category (with a simple term) and infer hidden properties of the object.?

Because our primary interest lies in the process of categorization, and
not in its products, we will focus on the similarity characteristic of catego-
ries. We will assume for the time being that assigning an object to a
category rests on determining that the object is sufficiently similar either to
known members of the category or to a summary of known members. Our

2. However, similarity considerations alone cannot explain why we have the categories
that we do. For example, if the only criterion for categoryhood was to maximize within-
class similarity, then all categories should have only one member (Medin 1983)!

3. 1 am oversimplifying here with regard to what is a guide versus what is a consequence
of categorization. For example, knowing that two objects belong to the same category can
make them seem more similar (Tversky 1977), in which case similarity is a consequence of
categorization. Still, the basic distinction drawn in the text covers most cases.
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next order of business is to find a means for measuring the similarity between
a pair of objects or between an object and a summary of category members.*

2.2 Measurement of Similarity

There are two general approaches to the measurement of similarity: geo-
metric and featural.

2.2.1 Geometric Approach

In the geometric approach, objects or items are represented as points in
some multidimensional space such that the metric distance between two
points corresponds to the dissimilarity between the two items. To illustrate,
figure 2.1 represents 20 different fruits, as well as the category “fruit” itself,
in a two-dimensional space. The shorter the metric distance between a pair of
points, the more similar the corresponding fruits. For example, “apple” is more
similar to “plum” than to “date,” but more similar to “date” than to “coconut.”

The space in figure 2.1 was constructed by a systematic procedure
developed by Shepard (1962). First, a group of subjects rated the similarity
between every possible pair of items (“apple”-“banana,” “apple”-“plum,”
“apple”-“fruit,” and so on—210 distinct pairs in all, for the items repre-
sented in figure 2.1). The similarity ratings were then input to a computer
program that used an iterative procedure to position the items in a space
(predetermined to have a certain dimensionality) so that the metric distance
between items corresponded as closely as possible to the (inverse of)
judged similarity between the items. '

Crucial to the representation in figure 2.1 is the assumption that psycho-
logical distance is “metric” (just as ordinary physical space is). That is, it is
assumed there is a function, d, that assigns to every pair of points a non-
negative number, their “distance,” in accord with the following three axioms:

(1) Minimality
d(a, b) = d(a,a) = db,b) =0

(2) Symmetry
d(a,b) = d(b,a)

4. There is more to categorization than similarity. For one thing, sometimes categorization
involves determining whether or not an object satisfies a definition. Although natural kind
and artifact kind categories lack true definitions (see, for example, Putnam 1975), “nominal
kind” categories like “uncle,” “felony,” and “even number” seem to have them (Schwartz
1979). Nominal kind categories are tailor-made for some specialized system, such as kinship,
law, or arithmetic. Deciding that something fits in such a category presumably involves
determining that it meets the definition, though even here factors like similarity may play
some role (Armstrong, Gleitman, and Gleitman 1983). Another matter is that categoriza-
tion sometimes involves inductive reasoning; this matter is discussed in section 2.3.3.
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Figure 2.1

A two-dimensional space for representing the similarity relations among 20 instances of
fruit and the category “fruit” itself. (From Tversky and Hutchinson 1986.)

(3)  Triangle inequality
d@a,b) + db,c) = d(a,c).

Minimality says that the distance between any item and itself is identical
for all items, and is the mimimum possible. Symmetry says that the distance
between two items is the same regardless of whether we start at one
item or the other. And triangle inequality essentially says that the shortest
distance between two points is a straight line. All three assumptions are
evident in figure 2.1. For example, the distance between “peach” and “date”
is (1) greater than that between “peach” and “peach,” (2) equal to that
between “date” and “peach,” and (3) less than the sum of the distances
between (a) “peach” and “apple” and (b) “apple” and “date.”

The geometric approach has a history of success in representing per-
ceptual objects (for a partial review, see Shepard 1974). Given a two-
dimensional representation of color, for example, one can use the distances
between the colors to accurately predict the likelihood that a subject in a
memory experiment will confuse one color with another. However, the
geometric approach works less well in representing conceptual items, such
as categories and their instances. Indeed, for conceptual items, Tversky
(1977) has produced evidence against each one of the metric axioms.

Minimality is compromised by the fact that the more we know about an
item, the more similar it is judged to itself. The president of the United
States, for example, seems more similar to himself than does some obscure
member of the House or Senate. A familiar category like “apple” seems
more similar to itself than does an unfamiliar category like “pomegranate.”
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The axiom of symmetry is undermined by the finding that an unfamiliar
category is judged more similar to a familiar or prominent category than
the other way around. For example, a “pomegranate” is judged more
similar to an “apple” than an “apple” is to a “pomegranate.” Although
exact violations of the triangle inequality are harder to describe (though see
Tversky and Gati 1982), we can capture the gist of them by noting that the
axiom implies that if items @ and b are similar to one another and so are
items b and ¢, then a and ¢ cannot be very dissimilar. One counterexample
to this involves countries: Jamaica is similar to Cuba, and Cuba is similar
to Russia, but Jamaica and Russia are very dissimilar. A milder counter-
example is manifested in the similarity ratings used to construct the space
of fruits in figure 2.1: “lemon” was judged similar to “orange,” and “orange”
was judged similar to “apricot,” but “lemon” and “apricot” were rated quite
dissimilar.

Another problem for the geometric approach involves the notion of a
“nearest neighbor” (Tversky and Hutchinson 1986). If we obtain similarity
ratings for pairs of items, as in the fruit example, then for each item we can
refer to the item rated most similar to it as its “nearest neighbor.” We can
now characterize an item by how many other items it is the nearest
neighbor to. When this was done with the similarity ratings for fruits, the
category “fruit” turned out to be the nearest neighbor for 18 of the 20
other terms. This finding is problematic because it is impossible for one
item in a metric space to be a nearest neighbor to so many other items as
long as the space is of relatively low dimensionality. In fact, in a two-
dimensional space the maximum number of items to which another item
can serve as nearest neighbor is five (look at figure 2.1). At a minimum;, a
nine-dimensional space is needed to accommodate “fruit” being the nearest
neighbor to 18 items. And once “fruit” is positioned in such a space so that
it is the nearest neighbor to the appropriate 18 items, there is no guarantee
that the distances between the 18 items themselves will adequately capture
the similarity ratings for the relevant pairs of items. The general problem is
that a category serves as the nearest neighbor to many of its instances,
so many as to call into question the appropriateness of low-dimensional
metric representations.

The above challenges to the geometric approach are not without their
critics. Defenders of the geometric approach have argued, for example, that
violations of symmetry and the triangle inequality arise more often when
similarity is judged directly (“Rate the similarity of a to b”) than when it
is judged indirectly (say, by the frequency with which a and b are confused
with one another). This suggests that direct judgments require complex
decision processes that are the source of the asymmetries (Krumhans| 1978;
Nosofsky 1986). Still, at this moment the weight of the evidence points
away from geometric representations of categories.
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2.2.2 Featural Approach

In the featural approach, an item is represented as a set of discrete features,
such as “red”, “round,” and “hard,” and the similarity between two items is
assumed to be an increasing function of the features they have in common
and a decreasing function of the features that they differ on. The best-
known version of this approach is Tversky’s (1977) contrast model. The
similarity between the set of features characterizing item i (labeled I) and
the set characterizing item j (labeled ]) is given by (4):

(4) Sim(L])=afdN])— bfd —]) — f(J— D).

Here I N ] designates the set of features common to the two items, I — |
designates the set of features distinct to item i, and ] — I designates the set
of features distinct to item j. In addition, f is a function that measures the
salience of each set of features, and 4, b, and c are parameters that determine
the relative contribution of the three feature sets.

Table 2.1 illustrates the contrast model with examples drawn from the do-
main of fruits. Each panel of the table deals with a phenomenon that surfaced
in our discussion of the geometric approach. Panel 1 is concerned with mini-
mality. It contains possible feature sets for the categories “apple” and “pome-
granate.” There are more features for “apple” than for “pomegranate,”
reflecting the fact that “apple” is the more familiar item. This difference will
result in “apple” being rated more similar to itself than is “pomegranate,”
because the more features an item has, the more common features there are
when the item is compared to itself. This idea is detailed in the calculations
given below each pair, where the contrast model has been used to calculate
the similarity between the members of the pair. For purposes of simplicity,
here and elsewhere, we will assume that the function f simply assigns a
value of 1 to each feature in a set of common or distinctive features.’

Panel 2 is concerned with symmetry. It compares the similarity of
“pomegranate” to “apple” versus that of “apple” to “pomegranate.” As
the calculations show, the contrast model is compatible with the fact
that “pomegranate” is more similar to “apple” than vice versa as long as
parameter b exceeds parameter c.

Panel 3 demonstrates that the contrast model is compatible with viola-
tions of the triangle inequality: “lemon” is similar to “orange,” and “orange”
is similar to “apricot,” but “lemon” is not similar to “apricot.” As the
calculations show, the violation will be pronounced whenever the weight
given to common features, a, exceeds that given to either set of distinctive
features, b or ¢, because then similarity will be relatively large for the first
two pairs but not for the third.

5. These feature sets are derived from the work of Smith et al. (1988), who had 30 subjects
list features of 15 different instances of “fruit” (including “apple,” “pomegranate,” “orange,”
“lemon,” and “apricot”).
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Table 2.1

Some illustrations of the contrast model.

Apple Apple Pomegranate Pomegranate
red red red red

round round round round

hard hard

sweet sweet

trees trees

Sim(A, A)=a(5) —b(0) —c(0)

Sim(P, P) =a(2) —b(0) —c(0)

Pomegranate ~ Apple Apple Pomegranate
red red red red
round round round round

hard hard

sweet sweet

trees trees
Sim(P, A)=a(2)—b(0)—c(3) Sim(A, P)=a(2)—b(3)—c(0)
Lemon Orange Orange Apricot Lemon Apricot
yellow orange orange red yellow red
oval round round round oval round
sour sweet sweet sweet sour sweet
tree tree tree tree tree tree
citrus citrus citrus citrus
ade ade ade ade
Sim(L, O)=a(3)—b(3)—c(3) Sim(O, A)=a(3)—b(3)—c(1) Sim(L, A)=a(1)— b(5)—¢(3)
Apple Plum Apple Fruit
red red red red
round round round round
hard soft hard hard
sweet sweet sweet sweet
trees trees trees

Sim(A, P)=a(4) —b(1) —c(1)

Sim(A, F)=a(4) —b(1) —c(0)
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Finally, panel 4 establishes that the contrast model is compatible with
the fact that a category can serve as a nearest neighbor to numerous
instances. Among “fruit” instances, “plum” is often rated most similar to
“apple.” But as the calculations show, “fruit” is an even closer neighbor to
“apple.” The reason is that “fruit” is more abstract than “plum” and hence
includes fewer distinctive features.

In sum, the contrast model offers a satisfactory account of the phe-
nomena that plagued the geometric approach, and we will use the model
in what follows.

However, we should note that the contrast model does have some
limitations. First, it does not tell us what an item’s features are. For each
domain of inquiry, like that of plant categories, researchers need indepen-
dent procedures for determining the features of the various items (asking
people to list features of items is one such procedure, albeit a rough one).

Second, the contrast model does not offer any theory of the function f
that measures the salience of each set of features. Such a theory would have
to address issues about the intensity of individual features (for instance, a
more saturated color might be assigned a greater salience than a less
saturated one), as well as issues about the diagnosticity of features (for
instance, a feature that discriminates among relevant objects might be
assigned a higher salience than one that does not). The theory would also
have to specify how and why people differ in the salience they assign to
the same feature in the same context.

Third, although the contrast model tells us what is computed—measures
of sets of common and distinctive features—it says little about the algo-
rithms used to effect the computation. Thus, the model does not tell
us whether the features of two items are compared simultaneously or
sequentially, and if the latter, in what order.

As we will see, in applying the contrast model we will have to add
auxiliary assumptions to deal with these three limitations.®

2.3 Similarity and Categorization

Now that we have some insight into the measurement of similarity, we
are in a position to appreciate that similarity underlies some important
phenomena in categorization.

6. A more specific (and more remediable) limitation of the contrast model concerns additiv-
ity. Most applications of the model assume that the salience assigned to a set of features is
an additive function of the individual saliences of the features that constitute the set. In fact,
though, Tversky (1977) derived the contrast model from a set of qualitative axioms, and his
derivation does not yield additivity of feature saliences. More recently Osherson (1987) has
derived the contrast model from a different set of qualitative axioms, and his derivation does
guarantee the additivity of feature saliences.
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2.3.1 Typicality Effects

People can reliably order the instances of any category with respect to how
“typical” or “prototypical” or “representative” they are of the category.
Table 2.2 presents typicality ratings for the categories “fruit” and “bird.”
These ratings were obtained by instructing subjects to rate typicality on a
7-point scale, with 7 corresponding to the highest typicality and 1 to the
lowest (Malt and Smith 1984). “Apple” and “peach” are considered typical
fruits, “raisin” and “fig” less typical, and “pumpkin” and “olive” atypical.
Similar variations are found among the instances of “bird.” Ratings like
these have been obtained for numerous categories and have been shown to
be relatively uncorrelated with the frequency or familiarity of the instances
(Mervis, Catlin, and Rosch 1976).

What is most important about these ratings is that they predict how
efficiently people can categorize various instances. Consider an experi-
mental task that is frequently used to study categorization. On each trial a
subject is given the name of a target category, such as “bird,” followed by
a test item. The subject must decide as quickly as possible whether the test
item names an instance of the target category, such as “robin,” or a
noninstance, such as “trout.” The main data of interest are the decision
times for correct categorizations. When the test item in fact names a
member of the target category, categorization times decrease with the

Table 2.2

Typicality ratings for 15 instances of “fruit” and “bird” (from Malt and Smith 1984).
Fruit Rating Bird Rating
apple 6.25* robin 6.89
peach 5.81 bluebird 6.42
pear 5.25 seagull 6.26
grape 5.13 swallow 6.16
strawberry 5.00 falcon 5.74
lemon 4.86 mockingbird 5.47
blueberry 4.56 starling 5.16
watermelon 4.06 owl 5.00
raisin 3.75 vulture 4.84
fig 3.38 sandpiper 447
coconut 3.06 chicken 3.95
pomegranate 2.50 flamingo 3.37
avocado 2.38 albatross 3:32
pumpkin 2.31 penguin 2.63
olive 2.25 bat 1.53

*Ratings were made on a 7-point scale, with 7 corresponding to the highest typicality.
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typicality of the test item. With “bird” as the target, for example, test items
corresponding to “robin” and “swallow” are categorized more quickly (by
somewhere between 50 and 100 milliseconds) than those corresponding to
“owl” and “vulture,” which in turn are categorized more quickly (again
by between 50 and 100 milliseconds) than test items corresponding to
“flamingo” and “penguin” (see, for example, Smith, Shoben, and Rips
1974).

These results in no way rest on the verbal nature of the paradigm. If the
task is modified so that the test items are pictures of particular objects (for
instance, a pictured robin or vulture or trout), the results are virtually
unchanged. Furthermore, to the extent that there is variation in the accuracy
of these categorizations (in either the verbal or the pictorial task), error
rates also decrease with the typicality of the test items. These effects are
extremely reliable: they have been documented in more than 50 experi-
ments that have used many different variants of the verbal and pictorial
categorization tasks (for a partial review, see Smith and Medin 1981).

There is also evidence that categorization depends on typicality in more
naturalistic settings. A child developing language acquires the names of
typical category members before those of atypical ones. And if children are
asked to sort pictured objects into categories, their sortings resemble those
of adults more if the objects are typical than if they are atypical (Mervis
1980; Rosch 1978).

2.3.2 Typicality as Similarity

A general interpretation of the above findings is that the typicality of an
instance is a measure of its similarity to its category, and categorization
amounts to determining that an item is sufficiently similar to the target
category. In what follows we will flesh out this interpretation.

If typicality is really similarity, then the contrast model should be able to
predict typicality ratings. To test this, we (1) select a domain of instances,
(2) estimate the features of the instances and the category (remember,
the contrast model does not supply these), (3) apply the contrast model to
each instance-category pair, and (4) see whether this estimate of instance-
category similarity correlates with the rated typicality of the instance in the
category.

The instances we will use as well as their features are taken from a study
by Malt and Smith (1984), in which subjects had 90 seconds to list all the
features they could think of for each instance. Table 2.3 contains a small
subset of the fea‘ures obtained. In the experiment 30 subjects were each
presented 15 instances of “bird”; they collectively produced more than 50
features, each feature being produced by more than one subject. Table 2.3
considers only nine of the instances and six of the features: flies, sings, lays
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Table 2.3
Tllustrations of how to use listed properties to calculate an instance’s similarity
to prototype.

Features Robin Bluebird Swallow Starling Vulture

Flies + + e + +

Sings + + + G =

Lays eggs + + + — =

Is small + % + + —

Nests in trees + + + 5+ +

Eats insects + + + + —_

Similarity

to bird 6—0—0=6 6—0—0=6 6—0—0=6 5—5—0=45 2—2—0=0

eggs, is small, nests in trees, and eats insects. The rows of the table list the
six features; the columns give the instances in order of decreasing typicality,
with the last column representing the category “bird.” Each entry in the
resulting matrix is a + or a —, where + indicates that at least two
subjects listed the feature for that instance and a — indicates that either
one or no subjects did. To determine the entries for “bird,” a feature was
assigned a + only if a majority of the instances had a + for that feature.
The category “bird” thus contained the frequent features of the instances.

The contrast model was used to determine the similarity of each instance
in table 2.3 to “bird.” In making the calculations (given at the bottom of the
table), it was assumed that (1) all features are equally salient (that is, f
assigns a value of 1 to each feature, which means that the salience of a set
of common or distinctive features is simply the number of features it
contains), and (2) common features count more than distinctive ones, with
features distinct to the category counting more than those distinct to the
instance (specifically, 2 = 1, b =, ¢ = ). The contrast model correctly
segregates the instances in table 2.3 into three levels of typicality (3 high,
3 medium, and 3 low), though it makes few distinctions among the in-
stances within each level. Finer distinctions can readily be made by assum-
ing that features differ in their salience or by considering more features.

You can verify that had the average similarity of an instance to all other
instances been computed (rather than its similarity to “bird”), virtually the
identical similarity scores would have been obtained. Hence, the success of
the contrast model in predicting typicality does not depend on whether a
category is taken to be an abstraction or a set of instances.

Let us now look briefly at how the above account could be extended
into a model of categorization that could explain some of the experimental
results mentioned earlier. The general ideas are (1) an item will be catego-
rized as an instance of a category if and only if it exceeds some criterial
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Table 2.3 (continued)

Sandpiper Chicken Flamingo Penguin Bird
+ - - - +
+ - ~ ~ +
+ + - + +
+ - - - +
- - - - +
+ - - - +

5—5—0=45 1—25—0=—15 0—3—0=-3 1—25—-0=—15

level of similarity to the category, and (2) the time needed to determine
that an item exceeds this criterial level of similarity is less the more similar
the item in fact is to the category. When these two assumptions are joined
with the claim that an item’s typicality reflects its similarity to its category,
it follows that more typical items will be categorized faster.

Fleshing out this model requires making specific assumptions about the
algorithms used to implement the contrast model. One possibility is to
assume that all features of the instance and category are compared in
parallel—with common features incrementing a similarity counter and
distinctive features decrementing it—and the outcomes of these feature
comparisons become available at different points in time. If an instance is
only moderately similar to its category, the process may have to wait
for late-arriving feature matches (common features) to reach threshold. In
contrast, if an instance is highly similar to its category, the early-arriving
feature matches may suffice to pass threshold.

A related approach is expressed in terms of spreading activation (a mecha-
nism that figures centrally in memory; see chapter 1). When an item
and category are presented, activation from these two sources begins
to spread to the features associated with them, with the activation from
each source being subdivided among its features. If the two sources of
activation intersect at some features (common features), further processing
is undertaken to determine that an instance-category relation holds. Be-
cause the number of intersecting or common features generally increases
with the typicality of an instance to its category, there are more opportuni-
ties for an intersection with typical than atypical instances, and hence more
opportunities for an early termination of the process (Collins and Loftus
1975). (In this model, features distinct to the category or item slow the
process by thinning the activation from each source.)
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The above models may suffice for the case where only one category is
relevant (as in the experiments described earlier), but often people have to
decide which of n relevant categories is the correct one (Is this plant
a mushroom or a toadstool? Is that car a Chevy or a Ford?). In such
cases a categorization model has to consider the relation of an item to
the categories that contrast with the correct one. Thus, a categorization
decision may consider something like the ratio between the similarity of
the instance to the target category versus the similarity of the instance to
all contrasting categories (Nosofsky 1986).”

2.3.3 Beyond Similarity

The approach we have taken accurately describes categorization in many
cases, but some recent experiments demonstrate situations where catego-
rization is based on something other than similarity.

Two studies by Rips (1989) suffice to make the point. In the first study,
on each trial a subject was presented a description of an object. that
mentioned only a value on a single dimension (say, an object’s diameter).
Then the subject decided which of two categories the object belonged
to, where prior work had established that the object was between the
subject’s average values for the two categories. For example, one item was
“an object three inches in diameter,” and the associated categories were
“pizzas” and “quarters.” Although the object was if anything closer to the
average diameter of a quarter (indeed, another group of subjects had
judged it more similar to a quarter), subjects judged it more likely to be a
pizza than a quarter, presumably because there is an official constraint on
the size of quarters but not on the size of pizzas. This kind of situation
obtained on all trials, as one category always allowed more variability on
the relevant dimension than did the other, and subjects consistently chose
the high-variability category. These results indicate that categorization
decisions consider variability as well as similarity.

A second study by Rips (1989) provides further evidence against similar-
ity-based categorization. Subjects were told about an animal that started
out with typical bird properties but suffered an accident that caused many
of its properties to resemble those of an insect. Subjects were further told
that eventually this animal mated with a normal female of its species, who
produced normal young. Subjects rated this creature as more likely to be a

7. It is worth pointing out that tasks other than categorization are affected by typicality,
including memory and reasoning tasks. As one example, when asked to generate from
memory all instances of a category, subjects retrieve instances in order of decreasing
typicality (Rosch 1978). Examples of typicality effects on reasoning will be discussed in
chapter 3. The general point is that a similarity-to-category computation may be a general
component of mental life.
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“bird” than an “insect,” but more similar to an “insect” than a “bird.” Here
we have a situation where categorization and similarity go in different
directions.

In these studies subjects seem to be reasoning more than categorizing.
Rather than restricting themselves to the features of the test item and
target categories—for instance, the features of the accident-prone bird and
the categories “bird” and “insect”—subjects seem to be bringing to bear
other beliefs and knowledge—for instance, “Animals produce offspring
of the same kind as themselves.” And rather than just comparing features,
subjects seem to be constructing arguments—for instance, “This animal
accidentally acquired insect properties but it produced normal bird off-
spring, so probably it’s still a bird.” In short, subjects seem to be reasoning
inductively. Although it is not yet known which situations lead to reason-
ing-based categorization and which to similarity-based categorization, it
seems plausible that similarity is involved in rapid, automatic decisions,
whereas reasoning comes into play in slower, more deliberative decisions.®

2.4 Summary and Other Issues

The essential story goes as follows. Categories, at least basic ones, seem
to be readily distinguishable from other classes in that they have far greater
coding potential and induction potential. Further, categories, at least
basic ones, tend to maximize within-category similarity while minimizing
between-category similarity. The latter property allows categorization to
occur by determining a test item’s similarity to known exemplars, or to a
summary of the category.

Detailing the categorization process requires specifying a precise means
for computing similarity between a pair of items. Both geometric and
featural approaches to similarity offer such means, but a number of empiri-
cal phenomena (such as asymmetries in similarity judgments) indicate that
the featural approach, particularly Tversky’s (1977) contrast model, is best
for measuring the similarity among categories and their instances. Studies
have shown that the similarity of an instance to a category as determined
by the contrast model is part of what lies behind the instance’s typicality
to its category. And an instance’s typicality to its category predicts numer-
ous aspects of categorization decisions such as their speed and accuracy.
Although the extent of these claims is somewhat compromised by demon-

8. The distinction of interest is phrased here in terms of “similarity versus reasoning” for
purposes of exposition. In a more extensive treatment of the issue, similarity itself would be
a kind of inductive reasoning, and the distinction of interest would be between similarity
and quasi-deductive forms of reasoning (Osherson, Smith, and Shafir 1986).
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strations of reasoning-based categorization, our essential story still covers
a lot of ground.

In order to keep our focus on similarity, we have had to deemphasize
other issues in categorization research. Three such issues deserve at least
brief mention.

First, it was noted at a couple of points that a category may be thought
of either as an abstract summary or as a set of exemplars. (The similarity
proposal was phrased so that it was noncommittal on this issue.) The
category “bird,” for example, could be mentally represented either by its
own set of features or by a set of specific exemplars (“robin,” “bluejay,” and
so on), each with its own set of features. Though at first blush it seems
more natural to think of a category as an abstraction, it is apparent that an
exemplar representation coupled with the right similarity algorithms can
account for much of the data in categorization.

Further, studies on this issue have often found that the ease of learning
an instance-category relation is better predicted by the similarity of the
instance to the other category exemplars than by the similarity of the
instance to a summary representation (see, for example, Estes 1986; Medin
and Schaffer 1978). However, other arguments favor an abstract summary.
For example, frequently we learn facts about a general class rather than
about specific exemplars, such as “All birds lay eggs,” and it seems likely
that we store such facts as summary information. Given the mixed evi-
dence on this issue, some sort of hybrid position (abstraction-plus-exemplar)
may be called for.

Second, we have dealt in this chapter mainly with “simple” categories—
roughly those denoted by single words like “apple” and “bird”—and
have ignored conjunctive categories—roughly those denoted by more
than one word like “dry apple” and “very large bird.” Because many
conjunctive categories are novel combinations and hence cannot be learned
from experience, there must be some procedures for composing conjunc-
tive categories out of simple ones. (This is similar to the composition-of-
meaning issue addressed in Larson 1990.)

A number of composition processes have been proposed, particularly for
the case where a single modifier is applied to a simple category as in
“dry apple.” One of these proposals is an extension of the similarity model
advanced earlier (Smith et al. 1988). Roughly, the modifier selectively
changes those features of the simple category that are mentioned in the
modifier (for example, dry changes the taste feature of apple but not its
size feature); then a decision about whether or not an item is an instance
of the conjunctive category can be made in exactly the same way as
before (by employing the contrast model). Some other models of composi-
tion involve reasoning-based categorization (see, for instance, Cohen and
Murphy 1984); still other proposals involve applications of fuzzy set theory,
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a generalization of traditional set theory that provides functions for relating
membership in conjunctive sets (categories) to membership in simpler ones
(see, for instance, Zadeh 1982).

Third, virtually everything in this chapter assumes that natural kind
and artifact kind categories do not have definitions and consequently
that categorization with such categories involves something other than
instantiating a definition. This position has been widely accepted in psy-
chology (see, for example, Smith and Medin 1981). Though some of the
best-known arguments for the position come from work in philosophy of
mind (for example, Kripke 1972; Putnam 1975; and see chapter 7), there is
a gap between the psychological and philosophical work on this problem
(see Rey 1983).

Suggestions for Further Reading

For further discussion of the distinguishing characteristics of categories and their depen-
dence on taxonomic level, see Rosch et al. 1976 and Rosch 1978. For a look at other distinc-
tions between categories, particularly those that have to do with kinds, see Schwartz 1979.

On the matter of measuring similarity between instances and categories, perhaps the
single most important paper is Tversky 1977. For a discussion of the geometric approach in
general, see Shepard 1974.

A psychological perspective on typicality effects and categorization is provided in
Smith and Medin 1981. For a philosophical perspective on these same issues, see Rey
1983. Murphy and Medin 1985 offers a summary of the reasoning-based approach to
categorization. Finally, for a more advanced treatment of many of the problems considered
in this chapter, with a particular emphasis on the similarity-reasoning distinction, see Smith
1989.

Categorization is intimately connected to concepts; indeed, psychologists often assume
that a concept is a mental representation of a category. The psychological study of concept
development is discussed in chapter 6. An analysis of concepts is also essential for an
understanding of language, particularly its development, as words may be construed as
names of concepts. Language development is the subject of Pinker 1990. In addition
to psychological studies, there is of course a rich tradition of analyses of concepts in
philosophy of mind; here, chapter 7 and Schwartz 1977 provide a useful entry point into
the recent literature.

Categorization is also related to inductive reasoning. As noted earlier, categorization
sometimes involves a kind of inductive reasoning. In other cases, however, inductive
reasoning reduces to something like similarity-based categorization, and these cases are
discussed in chapter 3.

Research on how we categorize objects has also proven useful for understanding how we
categorize people. For recent reviews of work on person categorization, see Cantor and
Kihlstrom 1986 and Markus and Zajonc 1985.

Questions

2.1 Use the contrast model to determine the ordering by typicality of the five vegetables
given below (the features are given under the name of each instance). Assume that all
features are weighted equally and thata = 1, b =4, and ¢ = 3.
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Stringbean ~ Carrot Cauliflower ~ Seaweed Broccoli ~ Vegetable

green orange white green green green
long long round long long long
hard hard hard stringy bushy hard

2.2 In question 2.1, what changes are there in the ordering of typicality if color is weighted
three times more than the other features?

2.3 It was noted in the text that the feature similarity model can be extended to explain
categorization with a conjunctive category like “dry apple.” Can such a feature model
be extended to a conjunction like “fake apple”?
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