

Half-Life with Dice

Radioactive decays: Every unhappy nucleus is unhappy in its own way

- Alpha Decay: An unstable nucleus spits off an alpha particle (He nucleus). Light nuclei can't do this.
- Beta Decay: A neutron inside nucleus changes to a proton, giving off an electron (aka beta particle) and neutrino.
- Beta + Decay: A proton inside nucleus changes to a neutron, giving off a positron (aka beta + particle) and neutrino.
- Electron Capture: A proton inside a nucleus captures an orbiting electron, changing it to a neutron. A neutrino is emitted.
- Gamma Decay: A photon is emitted (like visible light only much more energetic).

Nuclear Fusion and Fission

- Fission:
 - ➢Nuclear power reactors.
 - ➢Nuclear warheads.
- Fusion:
 - ➢Energy of the stars.
 - ➤ "Thermonuclear" weapons.

Plot: rest mass/rest energy per particle for all nuclei (not to scale).

- Iron (mass number 56) is the most stable element.
- Lighter nuclei can give off energy when they fuse.
- Heavier nuclei can give off energy if they spit (fission).

Nuclear Fusion

Fusion Reaction

Because the positively charged hydrogen nuclei repel each other, this happens only at very high temperatures. Fusion requires temperatures of about 100 million Kelvin!

Fusion in Stars: Proton-Proton Chain

Hydrogen \Rightarrow Helium + energy released

The Periodic Table of the Elements

1																	2
Η															Не		
Hydrogen 1.00794																	Helium 4.003
3	4	Fu	ision									5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
Lithium 6.941	Beryllium											Boron 10 811	Carbon	Nitrogen 14.00674	Oxygen 15 0004	Fluorine 18 9984032	Neon 20 1797
11	12	2										13	12.0107	15	16	17	18
Na	Greatest stability												Si	Р	S	CL	Ar
Sodium	Magnesium	nesium 20.60										Aluminum	Silicon	Phosphorus	Sulfur	Chlorine 25.4527	Argon
19	24.3050	21	22	23	24	25	26	27	28	29	30	31	32	30.973761	32.000	35.4527	39.948
K	Ca	Sc	Ti	V	Cr	Mn	Fo	$\tilde{\mathbf{C}}_{0}$	Ni	Ĉ	-7n	Ga	G		So	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
3/	38	39	40	41	42	43	44	45	46	4/	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132 90545	Barium 137 327	Lanthanum 138 9055	Hafnium 178 49	Tantalum 180 9479	Tungsten 183 84	Rhenium 186 207	Osmium 190.23	Iridium 192 217	Platinum 195 078	Gold	Mercury 200 59	Thallium 204 3833	Lead	Bismuth 208 98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200.70050	(207)	(210)	(222)
Fr	Ra	Ac	Rf	Dh	Sa	Rh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

Fission

How were lighter elements made? How were heavier elements made?

Origin of Elements

Light elements:

- Made by fusion in **stars**
- Dispersed by supernovas

Heavy elements:

- Made by fusion during supernovas
- Dispersed during supernovas

Vocabulary Lesson

- "<u>Nuclear</u>", not "<u>nucular</u>". (sigh...)
- "*Nuclear*" reactions, weapons can be either fission or fusion.
- Strangely, "<u>atomic</u>" is used as a synonym for "<u>nuclear</u>".
- "*Thermonuclear*" refers to fusion.
- "<u>H-bomb</u>" refers to fusion.
- "<u>Atom bomb</u>" usually means fission.

Peaceful uses of fusion?

Challenges:

- Heat Fuel to 100 million degrees
- Keep it from touching container walls
- Use "magnetic confinement"

Fusion Energy Production Schemes

The Sun + Photovoltaics: This is available and competitive **today**! Inertial confinement: Livermore National Ignition Facility: 192 lasers with 5x10¹⁴ W implode small H pellets. Magnetic confinement: Tokamaks Stellerators Magnetic mirrors

Moving target: Energy production is perpetually promised to be about 20-30 years away B. Don't hold your breath.

Hydrogen must be raised to a high temperature before it will undergo fusion because

- A) This reaction consumes more thermal energy than it produces.
- B) High temperatures are needed to overcome the "strong nuclear force" between H nuclei.
- C) High temperatures are needed to overcome the electric repulsion between H nuclei.
- D) Fusion and all other forms of chemical combustion must be initiated by high temperatures.
- E) All nuclear reactions take place only at high temperature.

Hydrogen must be raised to a high temperature before it will undergo fusion because

- A) This reaction consumes more thermal energy than it produces.
- B) High temperatures are needed to overcome the "strong nuclear force" between H nuclei.
- C) High temperatures are needed to overcome the electric repulsion between H nuclei.
- D) Fusion and all other forms of chemical combustion must be initiated by high temperatures.
- E) All nuclear reactions take place only at high temperature.

Except for H, He, and a little Li, the lower-mass elements (lighter than iron) that are spread throughout the dust of the universe were <u>created</u>

- A) right after the big bang.
- B) during the shock of a supernova.
- C) in hot white dwarf stars.
- D) in quasars.
- E) during the fusion process that powers the stars, then released during supernovas.

Except for H, He, and a little Li, the lower-mass elements (lighter than iron) that are spread throughout the dust of the universe were <u>created</u>

- A) right after the big bang.
- B) during the shock of a supernova.
- C) in hot white dwarf stars.
- D) in quasars.

E) during the fusion process that powers the stars, then released during supernovas.

What is Nuclear Fission?

But it's not that simple. Doesn't happen by itself!

Fission

Energy Release

Let

```
m_0(\text{reactants}) = m_0(^{235}\text{U}) + m_0(n)
Let
m_0(\text{products}) = m_0(^{141}\text{Ba}) + m_0(^{92}\text{Kr}) + 3m_0(n)
```

Which is true?

- A. m_0 (reactants) < m_0 (products) ?
- B. m_0 (reactants) = m_0 (products) ?
- c. m_0 (reactants) > m_0 (products) ?

Energy Release

Let

```
m_0(\text{reactants}) = m_0(^{235}\text{U}) + m_0(n)
Let
m_0(\text{products}) = m_0(^{141}\text{Ba}) + m_0(^{92}\text{Kr}) + 3m_0(n)
```

Which is true?

- A. m_0 (reactants) < m_0 (products) ?
- B. m_0 (reactants) = m_0 (products) ?

c. m_0 (reactants) > m_0 (products) ?

Energy released = $(\Delta m_0)c^2$!

Fission

- Unlike fusion, fission process can happen at room temperature.
- But what do we need to get it going?
 Neutrons ("slow" or "thermal" neutrons)
- Where do we get them?
 - Chain reaction ...

Simulation

Chain Reaction

Runaway Chain Reaction

Isotopes of Uranium

<u>Uranium 238</u> (²³⁸U)

- α decay lifetime of 5 billion years
- 99.3% abundance
- Not fissionable

<u>Uranium 235</u> (²³⁵U)

- α decay lifetime of 700 million years
- 0.7% abundance
- Fissionable!

Fission of Uranium

Uranium Enrichment

- ²³⁸U absorbs neutrons harmlessly
- In natural uranium, 0.7% abundance of ²³⁵U is not enough to sustain a chain reaction
- Need larger fraction of ²³⁵U for chain reaction

Need 3-4%

Need 90% 33

Critical Mass

A "critical mass" of fissile material is needed for a chain reaction.

- Subcritical: no chain reaction; too many neutrons absorbed/lost
- Supercritical: chain reaction accelerates; can lead to a nuclear explosion
- Critical: goal for nuclear reactors

Simulation

Fission Bomb

Uranium bomb "Little Boy" destroyed Hiroshima, Aug. 1945

Plutonium bomb "Fat Man" wiped out Nagasaki, Aug. 1945

- August 6, 1945: Uranium weapon dropped on Hiroshima. 80,000 dead.
- August 9: Plutonium bomb dropped on Nagasaki. 40,000 dead.
- August 14: Japan surrenders.
- Tens of thousands more die over weeks/months due to radiation effects.
- The explosive yield of nuclear weapons is measured in kilotons. One kiloton is the amount of energy released by the explosion of 1000 tons of high explosive (TNT).
- Hiroshima bomb: 12 kilotons. Nagasaki bomb: 22 kilotons.
- **Radioactive fallout**: highly radioactive fission products were spread over a wide area.
- **Tactical** nuclear weapons (drones, artillery shells, rockets): 10 tons to a few kilotons.
- **Strategic** nuclear weapons (bombs, intercontinental missiles): Tens of kilotons to tens of megatons (H-bombs).

To sustain a fission chain reaction,

- A) Each fissioning nucleus must release a sufficient number of alpha particles.
- B) Each fissioning nucleus must release a sufficient number of neutrons.
- C) Energy must be continually supplied from outside.
- D) The nuclei must collide with enough energy to overcome the electric repulsion between nuclei.
- E) All of the above.

To sustain a fission chain reaction,

- A) Each fissioning nucleus must release a sufficient number of alpha particles.
- B) Each fissioning nucleus must release a sufficient number of neutrons.
- C) Energy must be continually supplied from outside.
- D) The nuclei must collide with enough energy to overcome the electric repulsion between nuclei.
- E) All of the above.

Nuclear Power Reactors

The kinetic energy of the decay products is converted into heat, transported into a heat exchanger, used to turn turbines and generate electricity. The decay elements typically are stopped in the fuel, heating it up. They are cooled by liquid coolant, typically water.

Picture of reactor core. Why is there a blue glow in the water?

Nuclear Power Safety Issues

In the event of an interruption of normal operation, it is not enough to shut down the chain reaction:

- The reaction products are highly radioactive, and the heat generated is enough to melt not only the fuel rods, but the reactor vessel and everything else used to contain the radioactive material ("nuclear meltdown").
- Whenever this happens (Chernobyl 1986, Fukushima 2011) huge amounts of radioactivity are released into the environment.

Spent fuel rods are a huge liability:

- For the first 10 to 20 years they produce enough heat to require constant cooling.
- For the next couple of thousand of years they are radioactive enough to be an extreme hazard for human health and the environment.
- Spent fuel contains fissionable plutonium: Bomb material!
- They need to be constantly guarded (for thousands of years) to prevent them from falling into the hands of terrorists (or anybody, for that matter).
- These are externalized costs (not paid by electric power company, but by society & future generations).
- If they were included in price of electricity, nuclear power would be much less competitive.
- > Same for fossil fuels and costs of climate change.