

Heat Engines: Using Thermal Energy to Do Work

- <u>Definition</u>: a <u>heat engine</u> is any machine that converts thermal energy into mechanical forms of energy.
- How do we design such machines?

© 2010 Pearson Education, Inc.

Basic principle of most heat engines

The Steam-Electric Power Plant

Internal Combustion Engine

- Intake: The intake valve opens, and fresh air (containing no fuel), is drawn into the cylinder.
- Compression: <u>As the piston rises,</u> <u>the air is compressed, causing its</u> <u>temperature to rise. At the end of the</u> <u>compression stroke, the air is hot</u> <u>enough to ignite fuel.</u>
- **Injection:** Near the top of the compression stroke, the fuel injector drives fuel into the cylinder. The fuel-air mixture is ignited with a spark plug.
- **Power:** <u>As the fuel burns, the gas in</u> <u>the cylinder heats and expands,</u> <u>driving the piston.</u>
- Exhaust: The exhaust valve opens, and the exhaust is driven out of the cylinder

Demo: Sterling engine

Video: Sterling engine

Toy "Heat Engine"

Generic Heat Engine

© 2010 Pearson Education, Inc.

Efficiency

The fraction of the thermal energy that goes into mechanical work

© 2010 Pearson Education, Inc.

The energy efficiency of a heat engine is its <u>useful output</u> divided by the <u>total input</u>:

energy efficiency = (work output)/(thermal energy input)

$$\eta = \frac{W}{Q_h}$$

A heat engine consumes 100 W of thermal input power, produces 85 W of thermal output power, and does 15 Nm of work each second. What is the efficiency of this heat engine, in percent?

A heat engine consumes 100 W of thermal input power, produces 85 W of thermal output power, and does 15 Nm of work each second. What is the efficiency of this heat engine, in percent?

$$\eta = \frac{W}{Q_h} = \frac{15 Nm/s}{100 W} = \frac{15 W}{100 W} = 15\%$$

Imagine a heat engine that consumes 100 W of thermal input power, produces 75 W of thermal output power, and does 35 Nm of work each second. Such a heat engine would

- A. have a very high efficiency
- B. have a very low efficiency
- C. would violate the first law of thermodynamics
- D. would violate the second law of thermodynamics
- E. would not violate any laws of physics

Imagine a heat engine that consumes 100 W of thermal input power, produces 75 W of thermal output power, and does 35 Nm of work each second. Such a heat engine would

- A. have a very high efficiency
- B. have a very low efficiency
- C. would violate the first law of thermodynamics
- D. would violate the second law of thermodynamics
- E. would not violate any laws of physics

Entropy flow S is related to heat flow Q: Q = TS(absolute temperature, measured in Kelvin)

$$\eta = 1 - \frac{Q_c}{Q_h} = 1 - \frac{T_c S_c}{T_h S_h}$$

2nd Law of Thermodynamics: Total entropy increases

 $S_{out} \ge S_{in}$

 $S_c \ge S_h$

 $\eta =$

$$1 - \frac{T_c S_c}{T_h S_h} \le 1 - \frac{T_c}{T_h}$$

The equal sign holds of the entropy does not change:

$$S_{out} = S_{in}$$
 $S_c = S_h$ $\eta = 1 - \frac{T_c S_c}{T_h S_h} = 1 - \frac{T_c}{T_h}$

m

A process in which the entropy does not change is *reversible*. This would be **an ideal heat engine** (no friction, heat losses, etc.)

 $\eta = 1$

are at the same temperature?

W = 0

Summarize:

- No heat engine can be 100% efficient
- Some of the thermal energy always goes into exhaust heat
- The efficiency can never exceed the maximum theoretical efficiency given by

Max Efficiency =
$$\frac{T_{h} - T_{c}}{T_{h}}$$
 (Temperature measured in K)

• A (theoretical) heat engine operating at max efficiency is reversible, i.e., no entropy is generated.

Example:

- Input = boiling water (100 C = 373 K)
- Output = ice (0 C = 273 K)

Max Efficiency =
$$\frac{T_{in} - T_{out}}{T_{in}}$$
 (Temperatures measured in K)

 Max Efficiency = (373K-273K)/373K = 100K/373K = 27%

If a heat engine were to operate at the maximum theoretical efficiency, the entropy in this process would

- A. increase.
- B. stay the same.
- C. decrease.
- D. increase or stay the same.
- E. decrease or stay the same.

If a heat engine were to operate at the maximum theoretical efficiency, the entropy in this process would

- A. increase.
- B. stay the same.
- C. decrease.
- D. increase or stay the same.
- E. decrease or stay the same.

An inventor claims to have invented a ship that draws in seawater, extracts heat from the water, and expels the cooled water. The extracted heat is converted to work to propel the ship. This invention would

- A. violate the first law of thermodynamics.
- B. violate the second law of thermodynamics.
- C. violate the principle of conservation of energy.
- D. violate the principle of conservation of entropy.
- E. violate Newton's laws.
- F. not violate any laws of physics.

An inventor claims to have invented a ship that draws in seawater, extracts heat from the water, and expels the cooled water. The extracted heat is converted to work to propel the ship. This invention would

- A. violate the first law of thermodynamics.
- B. violate the second law of thermodynamics.
- C. violate the principle of conservation of energy.
- D. violate the principle of conservation of entropy.
- E. violate Newton's laws.
- F. not violate any laws of physics.

A heat engine draws in heat from a hot reservoir at a temperature of 900 K. It expels waste heat into the environment at a temperature of 300 K. The efficiency of this heat engine

- A. is not limited.
- B. could be anywhere between 0 and 1.
- C. is greater than 2/3.
- D. must be less than 1/3.
- E. is less than or equal to 2/3.

A heat engine draws in heat from a hot reservoir at a temperature of 900 K. It expels waste heat into the environment at a temperature of 300 K. The efficiency of this heat engine

- A. is not limited.
- B. could be anywhere between 0 and 1.
- C. is greater than 2/3.
- D. must be less than 1/3.

E. is less than or equal to 2/3.

"Maximum efficiency" is without friction or other losses! The second law says you cannot do better!

Table 7.1

Heat engine efficiencies. Typical temperatures, best possible efficiencies, and actual efficiencies.

	T _{in} (°C)	T _{ex} (°C)	Efficiency (%)	
Engine type			Best possible	Actual
Transportation				
Gasoline automobile/truck	700	340	37	20
Diesel auto/truck/locomotive	900	340	48	30
Steam locomotive	180	100	20	10
Steam-electric power plants				
Fossil fuel	550	40	60	40
Nuclear fuel	350	40	50	35
Solar powered	225	40	40	30
Ocean-thermal (solar)	25	5	7	???

© 2010 Pearson Education, Inc.

The Steam-Electric Power Plant

Steam-Electric Power Plant

Gas Fueled Automobile

Internal combustion

Gas Fueled Automobile

© 2010 Pearson Education, Inc.

Transportation efficiency

Table 7.4

U.S. passenger-moving efficiencies of several human transportation modes

	passenger-km per liter	passenger-mi per gal	passenger-km per MJ
Human on bicycle	642*	1530*	18.0
Human walking	178*	425 [*]	5.0
Intercity rail	60	144	1.7
Carpool auto (occupancy = 4)	36	88	1.0
Urban bus	33	80	0.9
Commercial airline	21	50	0.6
Commuting auto (occupancy = 1.15)	11	25	0.3

*For walking and bicycling, the table uses the "gasoline equivalent" of the required number of food calories.

© 2010 Pearson Education, Inc.

Tesla Model 3:

134 mpge

Transportation efficiency

Тэ	Ы	75	
10		1.0	

Freight-moving efficiencies of three transportation modes

	kg-km per MJ	tonne-km per liter
Rail (freight train)	2900	100
Truck (heavy)	720	25
Air (freight)	145	5

© 2010 Pearson Education, Inc.

Rail is the most efficient, due to its favorable aerodynamics and the relatively small energy loss of steel wheels on steel track.

Even more efficient: container ships/tanker ships

A heat pump is a heat engine run in reverse:

Sterling heat pump

Sterling heat pump

Cold out the bottom

Cold out the bottom

How can you improve the design of a heat engine so that it is more efficient?

- A) Increase the temperature of the hot reservoir.
- B) Decrease the temperature of the cold reservoir.
- C) Reduce frictional losses.
- D) All of the above.
- E) None of the above.

How can you improve the design of a heat engine so that it is more efficient?

- A) Increase the temperature of the hot reservoir.
- B) Decrease the temperature of the cold reservoir.
- C) Reduce frictional losses.
- D) All of the above.
- E) None of the above.