Cavendish Experiment: Direct measurement of *G*

Which is *false* about the Cavendish experiment?

- A. In the Cavendish experiment, it helps to use masses of large density as this allows the distance between masses to be reduced.
- B. The Cavendish experiment helps us determine the mass of the Earth, if we know the Earth's radius and the acceleration of gravity.
- C. The Cavendish experiment, performed on the surface of Mars, can tell us what Newton's gravitational constant is.
- D. The Cavendish experiment, performed on a spacecraft falling into a black hole, would yield the same value for the gravitational constant as when performed on Earth.
- E. If the Cavendish experiment were conducted on the moon, the gravitational acceleration of the moving masses would be about 1/6 of that measured on Earth.

Which is *false* about the Cavendish experiment?

- A. In the Cavendish experiment, it helps to use masses of large density as this allows the distance between masses to be reduced.
- B. The Cavendish experiment helps us determine the mass of the Earth, if we know the Earth's radius and the acceleration of gravity.
- C. The Cavendish experiment, performed on the surface of Mars, can tell us what Newton's gravitational constant is.
- D. The Cavendish experiment, performed on a spacecraft falling into a black hole, would yield the same value for the gravitational constant as when performed on Earth.
- E. If the Cavendish experiment were conducted on the moon, the gravitational acceleration of the moving masses would be about 1/6 of that measured on Earth.

Recap: States of Matter

<u>Solids</u>

- Atoms are closely packed
- They vibrate around fixed locations
- The material is "rigid"
- Two variants:
 - Crystal
 - Amorphous

States of matter

Liquid:

- Atoms are still closely packed.
- They move freely around one another.
- The material can "flow".
- Volume is approximately fixed.

States of matter

<u>Gas</u>

- Atoms or molecules are far apart.
- They move freely between collisions.
- Gas expands to fill available volume.

Phase change simulation

At the microscopic level, the difference between liquids and solids is that

- A. There is at least ten times as much distance between the atoms of a liquid than in a solid.
- B. In a liquid, the individual atoms are larger.
- C. In a liquid, the individual atoms are squishy and can deform.
- D. In a solid, the atoms are completely at rest no motion at all.
- E. The liquid's atoms move throughout the liquid, while the solid's atoms remain more or less fixed in place.

At the microscopic level, the difference between liquids and solids is that

- A. There is at least ten times as much distance between the atoms of a liquid than in a solid.
- B. In a liquid, the individual atoms are larger.
- C. In a liquid, the individual atoms are squishy and can deform.
- D. In a solid, the atoms are completely at rest no motion at all.
- E. The liquid's atoms move throughout the liquid, while the solid's atoms remain more or less fixed in place.

The amount of motion of molecules, whether in a solid, liquid, or gas, is a measure of the *temperature* of the substance.

As the molecules bounce off the walls of a container, they exert a *pressure* on them.

Pressure is outward force on the container, per unit area.

Properties of Gases

- Demo: Cooling helium with liquid nitrogen
- Effect of temperature on pressure/volume
- Buoyancy

- Demo: Liquid Nitrogen Cannon
- Phase change liquid to gas
- Effect of pressure

Vacuum: a complete absence of matter.

(A vacuum created on earth is never perfect; it is called a partial vacuum, as there are still some gas molecules present.)

Models of the Atom

- Greek model (300 BCE)
 - Tiny, indivisible, unchangeable
- <u>Electric model</u> (19th century)
 - Electrons inside.
 - They can be removed, leaving charged ions.
 - Almost all the mass is in the positive ions.
 - Explains electrical conduction.
 - Helps explain chemistry.

Models of the Atom

- <u>Planetary model</u> (Early 20th century)
 - Nucleus is tiny and massive
 - Light electrons in orbit around nuclei
 - Atoms are mostly empty space

Models of the atom

- <u>Quantum model</u> (Mid 20th century)
 - Electrons do not have definite orbits
 - Instead, they occupy fuzzy "orbitals"

Atomic Nucleus

- Made of neutrons and protons
- Explains "isotopes"
- Explains "fusion" and "fission"
- Nuclear energy...

Work

"Work" has a special meaning in physics. Consider the following situations:

Work

"Work" has a special meaning in physics.

Consider the following situations:

Work = force \times distance <u>Units</u>

1 Newton meter (Nm) = 1 Joule (J)

Work = force × distance

Work = force \times distance

Work = force × distance

Force must be in the direction of motion

If perpendicular, no work!

If opposite, "negative work"

Amount of work an object can do

<u>Units</u>

Joules (J)

1 J = 1Nm

(also ft-lbs, Calories, kWh, BTU, etc.)

I pick up a book from the floor and place it on a table. In the process, I have done

- A. positive work on the book.
- B. negative work on the book.
- C. no work at all on the book.
- D. imaginary work on the book.

I pick up a book from the floor and place it on a table. In the process, I have done

- A. positive work on the book.
- B. negative work on the book.
- C. no work at all on the book.
- D. imaginary work on the book.

I pick up a book from the floor, and place it on a table. In the process, the force of gravity does

- A. positive work on the book.
- B. negative work on the book.
- C. zero work on the book.
- D. imaginary work on the book.

I pick up a book from the floor, and place it on a table. In the process, the force of gravity does

- A. positive work on the book.
- B. negative work on the book.
- C. zero work on the book.
- D. imaginary work on the book.

I pick up a book from the floor, and place it on a table. The net work done on the book in this process is

- A. positive.
- B. zero.
- C. negative.
- D. imaginary.

I pick up a book from the floor, and place it on a table. The net work done on the book in this process is

- A. positive.
- B. zero.
- C. negative.
- D. imaginary.

Electrical energy

Chemical energy

Gravitational energy

Elastic energy

Kinetic energy

Types of energy

- Electric and magnetic energy
- Chemical energy
- Gravitational potential energy
- Kinetic energy
- Elastic energy
- Nuclear energy
- Radiant energy (light, etc.)
- Thermal energy

The energy in a battery is stored as

- A. electrical energy.
- B. chemical energy.
- C. kinetic energy.
- D. thermal energy.
- E. battery energy.

The energy in a battery is stored as

- A. electrical energy.
- B. chemical energy.
- C. kinetic energy.
- D. thermal energy.
- E. battery energy.

Kinetic energy

The kinetic energy of an object in motion can be derived from Newton's laws:

Work = (distance fallen) × (force of gravity) = $(\frac{1}{2} g t^2) \times (m g)$ = $\frac{1}{2} m (g t)^2$

speed after *t* seconds = *g t*

KinE = $\frac{1}{2} \times \text{mass} \times \text{the square of the speed}$

Thermal energy

Average kinetic energy of an atom:

K = 3/2 k T

T = absolute temperature

k = a proportionality constant

Thermal energy

Thermal energy is a kind of "kinetic energy at the atomic scale."

However, when we can't see the atoms jiggling around, we call it "thermal energy," not "kinetic energy."

Example: I am sitting still. Do I have any kinetic energy?

Let's demonstrate thermal energy...

Phet Simulation

Elastic energy

Hooke's law: Force ∞ distance stretched or compressed Let's demonstrate this

Phet simulation

Chemical Energy

I drop a book from a table. As it falls,

- A. the force of gravity is doing zero work, and the kinetic energy increases.
- B. the force of gravity is doing negative work, and the gravitational energy decreases.
- C. the force of gravity is doing negative work, and the gravitational energy increases.
- D. the force of gravity is doing positive work on the book, the kinetic energy increases, and the gravitational energy decreases.

I drop a book from a table. As it falls,

- A. the force of gravity is doing zero work, and the kinetic energy increases.
- B. the force of gravity is doing negative work, and the gravitational energy decreases.
- C. the force of gravity is doing negative work, and the gravitational energy increases.
- D. the force of gravity is doing positive work on the book, the kinetic energy increases, and the gravitational energy decreases.