Initially:

30 kg $0 \mathrm{~m} / \mathrm{sec}$
0.5 kg $15 \mathrm{~m} / \mathrm{sec}$

> What is the final velocity of Smurfette after she catches the ball?

Solution

Momentum $=$ mass \times velocity
$(\text { Total momentum })_{\text {before }}=(\text { Total momentum })_{\text {after }}$

Define left to be negative and right to be positive.
Before collision: Total Momentum $=(30 \mathrm{~kg} * 0 \mathrm{~m} / \mathrm{s})-(0.5 \mathrm{~kg} * 15 \mathrm{~m} / \mathrm{s})$
After collision: Total Momentum $=-(30 \mathrm{~kg}+0.5 \mathrm{~kg}) * v$
(velocity of Smurf and ball is the same after the catch.)
$(30 \mathrm{~kg} * \mathrm{~m} / \mathrm{s})-(0.5 \mathrm{~kg} * 15 \mathrm{~m} / \mathrm{s})=-30.5 \mathrm{~kg}{ }^{*} \mathrm{v}$
Solving for $v \rightarrow v=0.25 \mathrm{~m} / \mathrm{s}$ to the left

Clicker Question

Ice hockey player A (mass 100 kg), traveling at $4 \mathrm{~m} / \mathrm{s}$ on the ice, crashes into player B (mass 100 kg), who is at rest. After the collision, they are stuck together, wrestling each other. What is their speed after the collision, in m / s ?

Clicker Question

Ice hockey player A (mass 100 kg), traveling at $4 \mathrm{~m} / \mathrm{s}$ on the ice, crashes into player B (mass 100 kg), who is at rest. After the collision, they are stuck together, wrestling each other. What is their speed after the collision, in m / s ?

$$
\begin{gathered}
P_{\text {initial }}=O_{\text {final }} \\
m_{A} v_{A}+m_{B} v_{B}=\left(m_{A}+m_{B}\right) V \\
100 u_{g} 4 \frac{m}{s}+0=200 \mathrm{~kg} \cdot V \\
V=\frac{100}{200} 4 \frac{m}{s}=2 \frac{m}{s}
\end{gathered}
$$

Circular motion

Circular motion

Uniform Circular Motion Video

Clicker Question

A car drives around a circle with a 10 m radius in 10 seconds, maintaining a constant speed. What is the car's approximate speed, in m / s ?
A. $1 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $3.14 \mathrm{~m} / \mathrm{s}$
D. $6.28 \mathrm{~m} / \mathrm{s}$

Clicker Question

A car drives around a circle with a 10 m radius in 10 seconds, maintaining a constant speed. What is the car's approximate speed, in m / s ?
A. $1 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $3.14 \mathrm{~m} / \mathrm{s}$
D. $6.28 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\text { speed } & =\frac{2 \pi R}{T}=2 \pi \frac{10 u}{10 s}=2 \pi \frac{m}{s} \\
\pi & \approx 3.14
\end{aligned}
$$

Clicker Question

The diagram shows the moon orbiting around Earth. (The direction of the moon's motion is counter-clockwise.) Is any net force exerted on the moon?
A. Yes, the net force is in the direction of arrow A.
B. Yes, the net force is in the direction of arrow B.
C. Yes, the net force is in the direction of arrow C.
D. No, because no force is needed to keep an object moving at constant speed.
E. No, because the forces cancel out.

Clicker Question

The diagram shows the moon orbiting around Earth. (The direction of the moon's motion is counter-clockwise.) Is any net force exerted on the moon?
A. Yes, the net force is in the direction of arrow A .
B. Yes, the net force is in the direction of arrow B.
C. Yes, the net force is in the direction of arrow C.
D. No, because no force is needed to keep an object moving at constant speed.
E. No, because the forces cancel out.

Uniform Circular Motion

$$
a_{\mathrm{rad}}=\frac{v^{2}}{R}
$$

Clicker Question

When an object is moving on a circular path,
A. a centrifugal force accelerates the object inward.
B. a centrifugal force accelerates the object outward.
C. a centripetal force accelerates the object outward.
D. a centripetal force accelerates the object inward.
E. there is no force as long as the object's speed does not change.

Clicker Question

When an object is moving on a circular path,
A. a centrifugal force accelerates the object inward.
B. a centrifugal force accelerates the object outward.
C. a centripetal force accelerates the object outward.
D. a centripetal force accelerates the object inward.
E. there is no force as long as the object's speed does not change.

Clicker Question

A car drives around a circle of radius 10 m at a constant speed of $1 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the car's acceleration, in $\mathrm{m} / \mathrm{s}^{2}$?

Clicker Question

A car drives around a circle of radius 10 m at a constant speed of $1 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the car's acceleration, in $\mathrm{m} / \mathrm{s}^{2}$?

$$
a_{\mathrm{rad}}=\frac{v^{2}}{R}=0.1 \mathrm{~m} / \mathrm{s}^{2}
$$

How can the same force make one object move in a circle and another fall down? Imagine throwing an apple horizontally. The faster you throw it, the farther it goes.

Now take this to the extreme, remembering that the earth is a sphere. If the apple goes horizontally fast enough, it will be in orbit - falling all the time.

Is he weightless?
Does he feel weightless?

Is he weightless?
Does he feel weightless?

Satellites shot from a tower. e.g. Satellite B launched with a velocity of $8 \mathrm{~km} / \mathrm{s}$, and satellite A had a lesser
 velocity.

Good numbers to know:

Orbital velocity: $5 \mathrm{mi} / \mathrm{s}$ or $8 \mathrm{~km} / \mathrm{s}$
Escape velocity: $7 \mathrm{mi} / \mathrm{s}$ or $11 \mathrm{~km} / \mathrm{s}$

Newton's Theory of Gravity

Newton's Hypothesis:
All matter attracts all other matter via some universal law of gravitation

Newton guessed:

- Forces are equal and opposite
- Forces are proportional to masses

Newton's Hypothesis:
All matter attracts all other matter via some universal law of gravitation

Newton guessed:

- Forces are equal and opposite
- Forces are proportional to both masses
- Forces decrease with distance
- Distance should be measured from body center to body center

Newton's Hypothesis:
All matter attracts all other matter via some universal law of gravitation

$\mathrm{F}=\mathrm{m}_{1} \mathrm{a}_{1}$

$$
x=1 \text { ? } 2 ? 3 \text { ? }
$$

Newton's Hypothesis:
All matter attracts all other matter via some universal law of gravitation

$$
x=1 ? 2 ? 3 ?
$$

Newton's Universal Law of Gravitation

Force is inversely proportional to the square of distance

