Lecture 4 - Motion and Newton's Laws

Clicker Question

An ancient Egyptian notices that an object dropped into a deep well falls a distance of 20 cubits during 2 swings of his pendulum. How many cubits did the object fall during the first swing of the pendulum?
A. 1 cubits
B. 2.5 cubits
C. 5 cubits
D. 10 cubits
E. None of the other answers.

Clicker Question

An ancient Egyptian notices that an object dropped into a deep well falls a distance of 20 cubits during 2 swings of his pendulum. How many cubits did the object fall during the first swing of the pendulum?
A. 1 cubits
B. 2.5 cubits
C. 5 cubits Distance Fallen: $y=\frac{1}{2} g t^{2}$
D. 10 cubits
E. None of the other answers.

Falling motion

What is the ball's acceleration?

$$
a=g
$$

Falling motion

What force is acting on the ball?

$$
\mathrm{F}=\mathrm{W} \quad \text { (weight) }
$$

$\mathrm{F}=\mathrm{ma} \quad$ becomes $\quad \mathrm{W}=\mathrm{mg}$

Force of Gravity: Weight

Mass (m):
Amount of matter in an object (kg)

Weight (W):
Downward force of gravity acting on an object (Newtons)

Relation between them:

$$
\begin{gathered}
W=m g \\
g=10 \mathrm{~m} / \mathrm{s}^{2} \text { on surface of Earth } \\
g=1.6 \mathrm{~m} / \mathrm{s}^{2} \text { on surface of moon } \\
g=3.7 \mathrm{~m} / \mathrm{s}^{2} \text { on surface of Mars }
\end{gathered}
$$

Mass vs. weight

Lift on earth

Mass vs. weight

Block on the moon Lift on the moon

Clicker Question

Charlie, whose mass is 100 kg , jumps off a diving board. While he is flying through the air, what is Charlie's weight (in Newtons)?

Clicker Question

Charlie, whose mass is 100 kg , jumps off a diving board. While he is flying through the air, what is Charlie's weight (in Newtons)?

$$
W=m g=100 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=1000 \mathrm{~N}
$$

Spring Forces - Masses and Springs

- Hooke's Law
- Masses and Springs

Terminal Velocity

The highest velocity attainable by an object as it falls through a fluid (like air).

Terminal velocity

The forces acting on the body balance each other more and more closely as the terminal velocity is approached

($1 \mathrm{~m} / \mathrm{s} \approx 2.3 \mathrm{mph})$

Falling in Air: Skydiving

Terminal Velocity ${ }^{\sim} 130 \mathrm{mph}(\sim 60 \mathrm{~m} / \mathrm{s})$

Falling in Air: Skydiving

Falling in Air: Skydiving

Terminal velocity $\sim 10 \mathrm{mph}$ ($\sim 5 \mathrm{~m} / \mathrm{s}$)

Clicker Question

Bob is standing in an elevator that is accelerating downward at $3 \mathrm{~m} / \mathrm{s}^{2}$. Bob's mass is 100 kg . What is the normal force that the elevator floor exerts on Bob's shoes?
A. 700 N down
B. 700 N up
C. 300 N down
D. 300 N up
E. 1300 N down
F. 1300 N up

Clicker Question

Bob is standing in an elevator that is accelerating downward at $3 \mathrm{~m} / \mathrm{s}^{2}$. Bob's mass is 100 kg . What is the normal force that the elevator floor exerts on Bob's shoes?
A. 700 N down
B. 700 N up
C. 300 N down
D. 300 N up
E. 1300 N down

F. 1300 N up

$$
\begin{aligned}
& \text { Newrdow's Ind law }=F=m a \\
& F_{N}-W=m a=-300 \mathrm{~N} \\
& F_{N}=W-300 \mathrm{~N}=700 \mathrm{~N}
\end{aligned}
$$

Newton's Law of Force Pairs
 Newton's $3^{\text {rd }}$ Law

If object A exerts a force on object B, then object B exerts an equal and opposite force on object A.

- Force pairs are sometimes called "action \& reaction".
- There is no difference in principle between the two.
- So no way to decide which is "action" and which "reaction".
- Note that action/reaction force pairs always act on different bodies!

Example: Normal forces

Example: Gravitational forces

Comment on force pairs

Not all equal-and-opposite forces are force pairs!

Clicker Question

Alice pushes horizontally on a filing cabinet standing in the middle of a room, and notes that the cabinet does not move. Why doesn't it move?
A. The force of gravity pushes downward on the cabinet, and this cancels the pushing force.
B. The cabinet exerts a force on Alice, and this force is equal and opposite to the pushing force.
C. The cabinet pushes back on Alice with a force that is even greater than the pushing force.
D. A frictional force is also exerted by the floor on the cabinet, and this force is equal and opposite to the pushing force.
E. Very massive objects such as filing cabinets are difficult to set into motion because of their large inertia.

Clicker Question

Alice pushes horizontally on a filing cabinet standing in the middle of a room, and notes that the cabinet does not move. Why doesn't it move?
A. The force of gravity pushes downward on the cabinet, and this cancels the pushing force.
B. The cabinet exerts a force on Alice, and this force is equal and opposite to the pushing force.
C. The cabinet pushes back on Alice with a force that is even greater than the pushing force.
D. A frictional force is also exerted by the floor on the cabinet, and this force is equal and opposite to the pushing force.
E. Very massive objects such as filing cabinets are difficult to set into motion because of their large inertia.

Clicker Question

A skydiver is falling at terminal velocity. The Newton $3^{\text {rd }}$ law (action/reaction) partner to the skydiver's weight is given by:
A. The force of gravity pulling up on the Earth.
B. The force of air resistance pushing up on the skydiver.
C. The skydiver's body pushing down on the air via air resistance.
D. The force of gravity pulling down on the skydiver.
E. At terminal velocity, that force is zero.

Clicker Question

A skydiver is falling at terminal velocity. The Newton $3^{\text {rd }}$ law (action/reaction) partner to the skydiver's weight is given by:
A. The force of gravity pulling up on the Earth.
B. The force of air resistance pushing up on the skydiver.
C. The skydiver's body pushing down on the air via air resistance.
D. The force of gravity pulling down on the skydiver.
E. At terminal velocity, that force is zero.

Rocket Cart Demo

