Lecture 2
 How Things Move

I apply for a grant, and a!! They give me is a big ball and a small

Aristotle (384 to 335 B.C.E.)

He was an influential:

- Moralist
- Political scientist
- Literary critic
- Physicist
- Biologist
- Naturalist
- Logician
- Teacher
- Philosopher

Unfortunately, his physics was wrong...

Aristotle's Ideas about Motion

- Vertical and horizontal motion obey different rules
- Vertical motion
- Objects fall towards the earth's surface
- Heavier objects fall faster
- Horizontal motion
- Moving objects come to rest
- Objects at rest remain at rest

Hypothesis for vertical motion

- Heavy objects should fall faster
- Objects should fall more slowly through denser (more resistive) media
- Falling objects should not accelerate
- What if we were to drop a light (e.g. feather) and heavier (e.g. penny or rock) object simultaneously?

Problem: Falling motion is too fast!

How to slow down the motion?

- Modern approach:
-Slow-motion video
- Galileo approach:
-Balls and ramps

Rolling Ball Demo

Hypothesis for vertical motion

This would imply that:

- Heavy objects sh久 id fall faster
- Objects should fall more slowly through denser (more resistive) media
- Falling objects shみld not accelerate

Galileo's Laws for Falling

If air resistance is negligible:

- Any two objects dropped together will fall together (regardless of material, shape, weight, etc.)!
- Falling objects gain an equal increment of speed in each equal increment of time

Measuring distance

- Make marks at equal time increments
- Measure between them

Time

Time Approximate distance

Galileo/Newton: Horizontal and vertical motion

- The same laws of physics govern horizontal and vertical motion
- The Law of Inertia applies to both
\rightarrow we'll come back to this.
- Horizontal and vertical motion happen independently at the same time

FIG. II-6.
The addition of a uniform motion in a horizontal direction and accelerated motion in a vertical direction. The resulting curve is known as a parabola.

Which ball hits first?
A. Object A
B. Object B
C. Both at the same time

Demonstration

Which ball hits first?
A. Object A
B. Object B
C. Both at the same time

Demonstration

Speed

The rate of motion of a body

Distance traveled
Speed
Elapsed time

Which of the following situations represents a car whose speed is increasing?
A. A car takes longer and longer to cover equal distances
B. A car covers equal distances in equal times
C. In equal times, a car covers shorter and shorter distances
D. A car covers equal distances in shorter and shorter times
E. None of the above

Which of the following situations represents a car whose speed is increasing?
A. A car takes longer and longer to cover equal distances
B. A car covers equal distances in equal times
C. In equal times, a car covers shorter and shorter distances
D. A car covers equal distances in shorter and shorter times
E. None of the above

Acceleration

The rate change of velocity

For linear motion, velocity is the same as speed, so

Change of speed

Acceleration =
Elapsed time

$$
\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}
$$

An ancient Mayan noticed that a rubber ball would fall 3 tree-lengths in 5 heartbeats. What distance would it fall in 10 heartbeats?
A. 6 tree-lengths
B. 10 tree-lengths
C. 12 tree-lengths
D. 18 tree-lengths

Distance fallen \propto square of elapsed time

A: 12 tree-lengths

On the planet Xena, a Xenosian (Xenite?) picks up a stone and drops it into a deep hole. If it falls 2 m in 1 second, how far will it fall in 3 seconds? (Neglect air resistance.)
A) 6 m
B) 9 m

Distance fallen \propto square of elapsed time
C) 12 m
D) 15 m
E) 18 m

Speed

The rate of motion of a body.
Velocity
The combination of speed and direction.

What is the ball's speed?
 $30 \mathrm{~m} / \mathrm{s}$
 What is the ball' s velocity?

$30 \mathrm{~m} / \mathrm{s}$ downward

A satellite is in a circular orbit around the earth, moving at a constant speed. Does it have a constant (unchanging) velocity?

Vector

A quantity that has magnitude and direction.

Example: Velocity has speed and direction.

Speed

Not a vector!
The rate of motion of a body.

Velocity
A vector
The combination of speed and direction.

Acceleration

A vector
Any change of velocity, including:

- An increase in speed
- A decrease in speed
- A change in direction

Acceleration

- Can an object have a constant speed and still be accelerated?

Acceleration

- Can an object have a constant speed and still be accelerated?
- Yes!

Acceleration

- Can an object have a constant speed and still be accelerated?
- Yes!
- Can an object be going in a straight line and still be accelerated?

Acceleration

- Can an object have a constant speed and still be accelerated?
- Yes!
- Can an object be going in a straight line and still be accelerated?
- Yes!

Acceleration

- Can an object have a constant speed and still be accelerated?
- Yes!
- Can an object be going in a straight line and still be accelerated?
- Yes!
- A car is decelerating to a stop at a traffic light. Is it undergoing a kind of acceleration?

Acceleration

- Can an object have a constant speed and still be accelerated?
- Yes!
- Can an object be going in a straight line and still be accelerated?
- Yes!
- A car is decelerating to a stop at a traffic light. Is it undergoing a kind of acceleration?
- Yes!!

Projectile Motion Simulation

(a)

(b)
(c)
© 2010 Pearson Education, Inc.

In which cases is there acceleration?

In which direction is the acceleration?

Inertia

The tendency of all bodies to keep moving in a straight line at a constant speed unless acted on by external forces.

Law of inertia

For a body that is subjected to no external influences (also called external forces):

- If initially at rest, it will stay at rest!

What keeps the ball rolling?

- If initially moving, it will keep moving along a straight line at an unchanging speed!

Restatement:

A body that is subject to no external forces will maintain a constant velocity

Maze Game

